Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 184, Number 1, Pages 41–56
DOI: https://doi.org/10.4213/tmf8877
(Mi tmf8877)
 

This article is cited in 19 scientific papers (total in 19 papers)

Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI

A. M. Levinab, M. A. Olshanetskyca, A. V. Zotovd

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Department of Mathematics, National Research University Higher School of Economics, Moscow, Russia
c Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
d Steklov Mathematical Institute of RAS, Moscow, Russia
References:
Abstract: Quantum elliptic $R$-matrices satisfy the associative Yang–Baxter equation in $\mathrm{Mat}(N)^{\otimes 2}$, which can be regarded as a noncommutative analogue of the Fay identity for the scalar Kronecker function. We present a broader list of $R$-matrix-valued identities for elliptic functions. In particular, we propose an analogue of the Fay identities in $\mathrm{Mat}(N)^{\otimes 2}$. As an application, we use the $\mathbb{Z}_N\times\mathbb{Z}_N$ elliptic $R$-matrix to construct $R$-matrix-valued $2N^2\times 2N^2$ Lax pairs for the Painlevé VI equation {(}in the elliptic form{\rm)} with four free constants. More precisely, the case with four free constants corresponds to odd $N$, and even $N$ corresponds to the case with a single constant in the equation.
Keywords: quantum $R$-matrix, multidimensional Lax pair, Painlevé equation.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Received: 26.02.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 184, Issue 1, Pages 924–939
DOI: https://doi.org/10.1007/s11232-015-0306-y
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI”, TMF, 184:1 (2015), 41–56; Theoret. and Math. Phys., 184:1 (2015), 924–939
Citation in format AMSBIB
\Bibitem{LevOlsZot15}
\by A.~M.~Levin, M.~A.~Olshanetsky, A.~V.~Zotov
\paper Quantum Baxter--Belavin $R$-matrices and multidimensional Lax pairs for Painlev\'e~VI
\jour TMF
\yr 2015
\vol 184
\issue 1
\pages 41--56
\mathnet{http://mi.mathnet.ru/tmf8877}
\crossref{https://doi.org/10.4213/tmf8877}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399663}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184..924L}
\elib{https://elibrary.ru/item.asp?id=24073848}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 1
\pages 924--939
\crossref{https://doi.org/10.1007/s11232-015-0306-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360193700002}
\elib{https://elibrary.ru/item.asp?id=24942498}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940205116}
Linking options:
  • https://www.mathnet.ru/eng/tmf8877
  • https://doi.org/10.4213/tmf8877
  • https://www.mathnet.ru/eng/tmf/v184/i1/p41
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:566
    Full-text PDF :173
    References:59
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024