Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 184, Number 1, Pages 3–40
DOI: https://doi.org/10.4213/tmf8856
(Mi tmf8856)
 

This article is cited in 7 scientific papers (total in 7 papers)

Matching branches of a nonperturbative conformal block at its singularity divisor

H. Itoyamaab, A. D. Mironovcde, A. Yu. Morozovde

a Osaka City University Advanced Mathematical Institute (OCAMI), Osaka, Japan
b Department of Mathematics and Physics, Osaka City University, Osaka, Japan
c Lebedev Physical Institute, Moscow, Russia
d Institute for Experimental and Theoretical Physics, Moscow, Russia
e National Research Nuclear University MEPhI, Moscow, Russia
Full-text PDF (840 kB) Citations (7)
References:
Abstract: A conformal block is a function of many variables, usually represented as a formal series with coefficients that are certain matrix elements in the chiral {(}i.e., Virasoro{\rm)} algebra. A nonperturbative conformal block is a multivalued function defined globally over the space of dimensions and has many branches and, perhaps, additional free parameters not seen at the perturbative level. We discuss additional complications of the nonperturbative description that arise because all the best-studied examples of conformal blocks are at the singularity locus in the moduli space {\rm(}at divisors of the coefficients or, simply, at zeros of the Kac determinant{\rm).} A typical example is the Ashkin–Teller point, where at least two naive nonperturbative expressions are provided by the elliptic Dotsenko–Fateev integral and by the celebrated Zamolodchikov formula in terms of theta constants, and they differ. The situation is somewhat similar at the Ising and other minimal model points.
Keywords: two-dimensional conformal theory, conformal block.
Received: 20.01.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 184, Issue 1, Pages 891–923
DOI: https://doi.org/10.1007/s11232-015-0305-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: H. Itoyama, A. D. Mironov, A. Yu. Morozov, “Matching branches of a nonperturbative conformal block at its singularity divisor”, TMF, 184:1 (2015), 3–40; Theoret. and Math. Phys., 184:1 (2015), 891–923
Citation in format AMSBIB
\Bibitem{ItoMirMor15}
\by H.~Itoyama, A.~D.~Mironov, A.~Yu.~Morozov
\paper Matching branches of a~nonperturbative conformal block at its singularity divisor
\jour TMF
\yr 2015
\vol 184
\issue 1
\pages 3--40
\mathnet{http://mi.mathnet.ru/tmf8856}
\crossref{https://doi.org/10.4213/tmf8856}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399662}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184..891I}
\elib{https://elibrary.ru/item.asp?id=24073847}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 1
\pages 891--923
\crossref{https://doi.org/10.1007/s11232-015-0305-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360193700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940184474}
Linking options:
  • https://www.mathnet.ru/eng/tmf8856
  • https://doi.org/10.4213/tmf8856
  • https://www.mathnet.ru/eng/tmf/v184/i1/p3
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:579
    Full-text PDF :207
    References:88
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024