Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 184, Number 2, Pages 338–351
DOI: https://doi.org/10.4213/tmf8845
(Mi tmf8845)
 

This article is cited in 3 scientific papers (total in 3 papers)

Processes of electron–positron plasma production by a high-energy neutrino in a strong magnetic field

A. A. Gvozdev, E. V. Osokina

Demidov Yaroslavl State University, Yaroslavl, Russia
Full-text PDF (482 kB) Citations (3)
References:
Abstract: Under the conditions of a strongly magnetized hyperaccretion disk around a Kerr black hole, we study the processes $\nu_i+\tilde\nu_i\to e^-+e^+$ and $\nu_i(\tilde\nu_i)\stackrel{B}{\longrightarrow} \nu_i(\tilde\nu_i)+e^++e^-$ of electron–positron plasma production near the disk. We calculate the plasma production rate in these processes for some known parameters of neutrino emission from the disk while the magnetic field distribution is determined by qualitative considerations. We show that the magnetic field influence on the cross section of the annihilation process $\nu_i+\tilde\nu_i\to e^-+e^+$ can be neglected if $\omega^2\gg eB\gg m_e^2$. We also show that the rate of energy–momentum production in the $e^+e^-$ plasma in the reaction $\nu_i(\tilde\nu_i)\stackrel{B}{\longrightarrow} \nu_i(\tilde\nu_i)+e^++e^-$ significantly depends on the magnetic field distribution over the disk. To obtain the final estimate of the plasma production rate in this reaction, the strong magnetic field distribution near the neutrino emitting part of the disk must be determined.
Keywords: hyperaccretion disk, neutrino, strong magnetic field.
Received: 15.12.2014
Revised: 25.03.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 184, Issue 2, Pages 1189–1201
DOI: https://doi.org/10.1007/s11232-015-0326-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Gvozdev, E. V. Osokina, “Processes of electron–positron plasma production by a high-energy neutrino in a strong magnetic field”, TMF, 184:2 (2015), 338–351; Theoret. and Math. Phys., 184:2 (2015), 1189–1201
Citation in format AMSBIB
\Bibitem{GvoOso15}
\by A.~A.~Gvozdev, E.~V.~Osokina
\paper Processes of electron--positron plasma production by a~ high-energy neutrino in a~strong magnetic field
\jour TMF
\yr 2015
\vol 184
\issue 2
\pages 338--351
\mathnet{http://mi.mathnet.ru/tmf8845}
\crossref{https://doi.org/10.4213/tmf8845}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399683}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184.1189G}
\elib{https://elibrary.ru/item.asp?id=24073869}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 2
\pages 1189--1201
\crossref{https://doi.org/10.1007/s11232-015-0326-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361532600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84942162737}
Linking options:
  • https://www.mathnet.ru/eng/tmf8845
  • https://doi.org/10.4213/tmf8845
  • https://www.mathnet.ru/eng/tmf/v184/i2/p338
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :150
    References:52
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024