Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 184, Number 1, Pages 79–91
DOI: https://doi.org/10.4213/tmf8821
(Mi tmf8821)
 

This article is cited in 22 scientific papers (total in 22 papers)

Solutions of the sine-Gordon equation with a variable amplitude

E. L. Aero, A. N. Bulygin, Yu. V. Pavlov

Institute of Problems in Mechanical Engineering, RAS, St.~Petersburg, Russia
References:
Abstract: We propose methods for constructing functionally invariant solutions $u(x,y,z,t)$ of the sine-Gordon equation with a variable amplitude in $3{+}1$ dimensions. We find solutions $u(x,y,z,t)$ in the form of arbitrary functions depending on either one $(\alpha(x,y,z,t))$ or two $(\alpha(x,y,z,t),\beta(x,y,z,t))$ specially constructed functions. Solutions $f(\alpha)$ and $f(\alpha,\beta)$ relate to the class of functionally invariant solutions, and the functions $\alpha(x,y,z,t)$ and $\beta(x,y,z,t)$ are called the ansatzes. The ansatzes $(\alpha,\beta)$ are defined as the roots of either algebraic or mixed (algebraic and first-order partial differential) equations. The equations defining the ansatzes also contain arbitrary functions depending on $(\alpha,\beta)$. The proposed methods allow finding $u(x,y,z,t)$ for a particular, but wide, class of both regular and singular amplitudes and can be easily generalized to the case of a space with any number of dimensions.
Keywords: sine-Gordon equation, wave equation, eikonal equation, functionally invariant solution, ansatz.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00224_a
Received: 20.11.2014
Revised: 24.02.2015
English version:
Theoretical and Mathematical Physics, 2015, Volume 184, Issue 1, Pages 961–972
DOI: https://doi.org/10.1007/s11232-015-0309-8
Bibliographic databases:
PACS: 02.30.Jr, 05.45.-a
MSC: 39A14
Language: Russian
Citation: E. L. Aero, A. N. Bulygin, Yu. V. Pavlov, “Solutions of the sine-Gordon equation with a variable amplitude”, TMF, 184:1 (2015), 79–91; Theoret. and Math. Phys., 184:1 (2015), 961–972
Citation in format AMSBIB
\Bibitem{AerBulPav15}
\by E.~L.~Aero, A.~N.~Bulygin, Yu.~V.~Pavlov
\paper Solutions of the~sine-Gordon equation with a~variable amplitude
\jour TMF
\yr 2015
\vol 184
\issue 1
\pages 79--91
\mathnet{http://mi.mathnet.ru/tmf8821}
\crossref{https://doi.org/10.4213/tmf8821}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399666}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184..961A}
\elib{https://elibrary.ru/item.asp?id=24073852}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 1
\pages 961--972
\crossref{https://doi.org/10.1007/s11232-015-0309-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360193700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940188942}
Linking options:
  • https://www.mathnet.ru/eng/tmf8821
  • https://doi.org/10.4213/tmf8821
  • https://www.mathnet.ru/eng/tmf/v184/i1/p79
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:524
    Full-text PDF :287
    References:57
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024