Abstract:
The partition function of the two-dimensional U(n)-gauge field theory in the limit n→∞ is rigorously derived. Recent studies in the theory of random matrices combined with the traditional tools of statistical mechanics were the stimuli for the methods used and the results obtained.
Citation:
B. A. de Monvel, M. V. Shcherbina, “Free energy of the two-dimensional U(n)-gauge field theory on the sphere”, TMF, 115:3 (1998), 389–401; Theoret. and Math. Phys., 115:3 (1998), 670–679
\Bibitem{De Shc98}
\by B.~A.~de Monvel, M.~V.~Shcherbina
\paper Free energy of the two-dimensional $U(n)$-gauge field theory on the sphere
\jour TMF
\yr 1998
\vol 115
\issue 3
\pages 389--401
\mathnet{http://mi.mathnet.ru/tmf881}
\crossref{https://doi.org/10.4213/tmf881}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1692402}
\zmath{https://zbmath.org/?q=an:0991.81068}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 115
\issue 3
\pages 670--679
\crossref{https://doi.org/10.1007/BF02575490}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075883900005}
Linking options:
https://www.mathnet.ru/eng/tmf881
https://doi.org/10.4213/tmf881
https://www.mathnet.ru/eng/tmf/v115/i3/p389
This publication is cited in the following 4 articles:
Antoine Dahlqvist, Thibaut Lemoine, “Large N limit of Yang–Mills partition function
and Wilson loops on compact surfaces”, Prob. Math. Phys., 4:4 (2023), 849
Antoine Dahlqvist, James R. Norris, “Yang–Mills Measure and the Master Field on the Sphere”, Commun. Math. Phys., 377:2 (2020), 1163
Hall B.C., “The Large-N Limit For Two-Dimensional Yang-Mills Theory”, Commun. Math. Phys., 363:3 (2018), 789–828
Zelditch, S, “Macdonald's identities and the large N limit of Y M-2 on the cylinder”, Communications in Mathematical Physics, 245:3 (2004), 611