This article is cited in 9 scientific papers (total in 9 papers)
Analyzing the dependence of finite-fold approximations of the harmonic oscillator equilibrium density matrix and of the Wigner function on the quantization prescription
Abstract:
For an arbitrary statistical mixture of τ-quantizations, we obtain an explicit expression for the leading parts of the equilibrium density matrix and for the corresponding Wigner function of a harmonic oscillator in the approach of Feynman approximations using the Chernoff theorem. Taking the oscillator Hamiltonian as an example, we determine the convergence rate for approximations of means of operators of observables depending on the approximation order and depending on the quantization rule. We demonstrate that the convergence rate of approximations of the mean of the energy operator is not uniform with respect to the Gibbs parameter.
Citation:
L. A. Borisov, Yu. N. Orlov, “Analyzing the dependence of finite-fold approximations of the harmonic oscillator equilibrium density matrix and of the Wigner function on the quantization prescription”, TMF, 184:1 (2015), 106–116; Theoret. and Math. Phys., 184:1 (2015), 986–995
\Bibitem{BorOrl15}
\by L.~A.~Borisov, Yu.~N.~Orlov
\paper Analyzing the~dependence of finite-fold approximations of the~harmonic oscillator equilibrium density matrix and of the~Wigner function on the~quantization prescription
\jour TMF
\yr 2015
\vol 184
\issue 1
\pages 106--116
\mathnet{http://mi.mathnet.ru/tmf8803}
\crossref{https://doi.org/10.4213/tmf8803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399668}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...184..986B}
\elib{https://elibrary.ru/item.asp?id=24073854}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 184
\issue 1
\pages 986--995
\crossref{https://doi.org/10.1007/s11232-015-0311-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360193700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940209500}
Linking options:
https://www.mathnet.ru/eng/tmf8803
https://doi.org/10.4213/tmf8803
https://www.mathnet.ru/eng/tmf/v184/i1/p106
This publication is cited in the following 9 articles:
Ya. G. Batishcheva, “Cauchy problem for a new aggregation–fragmentation model in the case of equal reaction rate constants”, Comput. Math. Math. Phys., 62:3 (2022), 452–466
Borisov L.A. Orlov Y.N., “Generalized Evolution Equation of Wigner Function For An Arbitrary Linear Quantization”, Lobachevskii J. Math., 42:1 (2021), 63–69
L. A. Borisov, Yu. N. Orlov, “On the Inversion Formula of Linear Quantization and the Evolution Equation for the Wigner Function”, Proc. Steklov Inst. Math., 313 (2021), 17–26
Borisov L.A. Orlov Yu.N., “On the Generalization of Moyal Equation For An Arbitrary Linear Quantization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 24:1 (2021), 2150003
Ya. G. Batischeva, “Zadacha Koshi dlya novoi modeli agregatsii-drobleniya v sluchae ravnykh konstant reaktsii”, Preprinty IPM im. M. V. Keldysha, 2020, 006, 28 pp.
Yu. N. Orlov, “Uravnenie evolyutsii funktsii Vignera dlya lineinykh kvantovanii”, Preprinty IPM im. M. V. Keldysha, 2020, 040, 22 pp.
L. A. Borisov, Y. N. Orlov, V. J. Sakbaev, “Chernoff equivalence for shift operators, generating coherent states in quantum optics”, Lobachevskii J. Math., 39:6 (2018), 742–746
Yu. N. Orlov, “O kommutatsii kvantovykh operatorov pervykh integralov gamiltonovykh sistem”, Preprinty IPM im. M. V. Keldysha, 2018, 018, 15 pp.
L. A. Borisov, Yu. N. Orlov, V. Zh. Sakbaev, “Ekvivalentnost po Chernovu primenitelno k uravneniyam evolyutsii matritsy plotnosti i funktsii Vignera dlya lineinogo kvantovaniya”, Preprinty IPM im. M. V. Keldysha, 2015, 066, 28 pp.