Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 183, Number 1, Pages 90–104
DOI: https://doi.org/10.4213/tmf8798
(Mi tmf8798)
 

Schrödinger operator with a superposition of short-range and point potentials

V. A. Gradusov, S. L. Yakovlev

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We study the class of Schrödinger operators whose potential terms are sums of the short-range $\boldsymbol{r}$ and point potentials. We consider the case where the short-range potential has a singularity on the support $r=0$ of the point interaction. The point interaction is constructed using the asymptotic form of the Green's function of the Schrödinger operator $-\Delta+V(\boldsymbol{r})$ with a short-range potential $V$ as $\boldsymbol{r}\to0$. We consider potentials with a singularity of the form $r^{-\rho}$, $\rho>0$, at the origin. We use the Lippmann–Schwinger integral equation in our study. We show that if the singularity of the potential is weaker than the Coulomb singularity, then the asymptotic behavior of the Green's function has a standard singularity. If the singularity of the potential has the form $r^{-\rho}$, $1\le\rho<3/2$, then an additional singularity arises in the asymptotic behavior of the Green's function. If $\rho=1$, then the additional logarithmic singularity has the same form as in the case of the Coulomb potential. If $1<\rho<3/2$, then the additional singularity has the form of the polar singularity $r^{-\rho+1}$.
Keywords: Schrödinger operator, point interaction, pseudopotential, Green's function asymptotics.
Funding agency Grant number
Saint Petersburg State University 11.38.263.2014
Russian Foundation for Basic Research 14-02-00326
Received: 25.09.2014
Revised: 27.10.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 183, Issue 1, Pages 527–539
DOI: https://doi.org/10.1007/s11232-015-0279-x
Bibliographic databases:
Language: Russian
Citation: V. A. Gradusov, S. L. Yakovlev, “Schrödinger operator with a superposition of short-range and point potentials”, TMF, 183:1 (2015), 90–104; Theoret. and Math. Phys., 183:1 (2015), 527–539
Citation in format AMSBIB
\Bibitem{GraYak15}
\by V.~A.~Gradusov, S.~L.~Yakovlev
\paper Schr\"odinger operator with a~superposition of short-range and point potentials
\jour TMF
\yr 2015
\vol 183
\issue 1
\pages 90--104
\mathnet{http://mi.mathnet.ru/tmf8798}
\crossref{https://doi.org/10.4213/tmf8798}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399635}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...183..527G}
\elib{https://elibrary.ru/item.asp?id=23421736}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 183
\issue 1
\pages 527--539
\crossref{https://doi.org/10.1007/s11232-015-0279-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353242500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928252332}
Linking options:
  • https://www.mathnet.ru/eng/tmf8798
  • https://doi.org/10.4213/tmf8798
  • https://www.mathnet.ru/eng/tmf/v183/i1/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :156
    References:57
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024