Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 182, Number 2, Pages 213–222
DOI: https://doi.org/10.4213/tmf8785
(Mi tmf8785)
 

This article is cited in 14 scientific papers (total in 14 papers)

Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces

I. A. Taimanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: We propose a construction of blowup solutions of the modified Novikov–Veselov equation based on the Moutard transformation of the two-dimensional Dirac operators and on its geometric interpretation in terms of surface geometry. We consider an explicit example of such a solution constructed using the minimal Enneper surface.
Keywords: blowup solution, modified Novikov–Veselov equation, Moutard transformation, two-dimensional Dirac operator, Weierstrass representation of surfaces, minimal surface.
Funding agency Grant number
Russian Science Foundation 14-11-00441
Received: 27.08.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 182, Issue 2, Pages 173–181
DOI: https://doi.org/10.1007/s11232-015-0255-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, TMF, 182:2 (2015), 213–222; Theoret. and Math. Phys., 182:2 (2015), 173–181
Citation in format AMSBIB
\Bibitem{Tai15}
\by I.~A.~Taimanov
\paper Blowing up solutions of the~modified Novikov--Veselov equation and
minimal surfaces
\jour TMF
\yr 2015
\vol 182
\issue 2
\pages 213--222
\mathnet{http://mi.mathnet.ru/tmf8785}
\crossref{https://doi.org/10.4213/tmf8785}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370577}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...182..173T}
\elib{https://elibrary.ru/item.asp?id=23421711}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 182
\issue 2
\pages 173--181
\crossref{https://doi.org/10.1007/s11232-015-0255-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350668000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924390442}
Linking options:
  • https://www.mathnet.ru/eng/tmf8785
  • https://doi.org/10.4213/tmf8785
  • https://www.mathnet.ru/eng/tmf/v182/i2/p213
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:535
    Full-text PDF :291
    References:70
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024