Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 182, Number 2, Pages 213–222
DOI: https://doi.org/10.4213/tmf8785
(Mi tmf8785)
 

This article is cited in 14 scientific papers (total in 14 papers)

Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces

I. A. Taimanovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: We propose a construction of blowup solutions of the modified Novikov–Veselov equation based on the Moutard transformation of the two-dimensional Dirac operators and on its geometric interpretation in terms of surface geometry. We consider an explicit example of such a solution constructed using the minimal Enneper surface.
Keywords: blowup solution, modified Novikov–Veselov equation, Moutard transformation, two-dimensional Dirac operator, Weierstrass representation of surfaces, minimal surface.
Funding agency Grant number
Russian Science Foundation 14-11-00441
Received: 27.08.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 182, Issue 2, Pages 173–181
DOI: https://doi.org/10.1007/s11232-015-0255-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, TMF, 182:2 (2015), 213–222; Theoret. and Math. Phys., 182:2 (2015), 173–181
Citation in format AMSBIB
\Bibitem{Tai15}
\by I.~A.~Taimanov
\paper Blowing up solutions of the~modified Novikov--Veselov equation and
minimal surfaces
\jour TMF
\yr 2015
\vol 182
\issue 2
\pages 213--222
\mathnet{http://mi.mathnet.ru/tmf8785}
\crossref{https://doi.org/10.4213/tmf8785}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370577}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...182..173T}
\elib{https://elibrary.ru/item.asp?id=23421711}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 182
\issue 2
\pages 173--181
\crossref{https://doi.org/10.1007/s11232-015-0255-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350668000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924390442}
Linking options:
  • https://www.mathnet.ru/eng/tmf8785
  • https://doi.org/10.4213/tmf8785
  • https://www.mathnet.ru/eng/tmf/v182/i2/p213
  • This publication is cited in the following 14 articles:
    1. Iskander A. Taimanov, “On a Formation of Singularities of Solutions to Soliton Equations Represented by L, A, B-triples”, Acta. Math. Sin.-English Ser., 40:1 (2024), 406  crossref
    2. P. G. Grinevich, “Riemann Surfaces Close to Degenerate Ones in the Theory of Rogue Waves”, Proc. Steklov Inst. Math., 325 (2024), 86–110  mathnet  crossref  crossref  zmath  isi
    3. P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic Cauchy problem for (2+1)-dimensional anomalous waves for the focusing Davey–Stewartson 2 equation”, Russian Math. Surveys, 77:6 (2022), 1029–1059  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. I. A. Taimanov, “The Moutard Transformation for the Davey–Stewartson II Equation and Its Geometrical Meaning”, Math. Notes, 110:5 (2021), 754–766  mathnet  crossref  crossref  isi  elib
    5. P. G. Grinevich, R. G. Novikov, “Creation and annihilation of point-potentials using Moutard-type transform in spectral variable”, J. Math. Phys., 61:9 (2020), 093501  crossref  mathscinet  isi
    6. A. A. Yurova, A. V. Yurov, V. A. Yurov, “The Cauchy problem for the generalized hyperbolic Novikov-Veselov equation via the Moutard symmetries”, Symmetry-Basel, 12:12 (2020), 2113  crossref  isi
    7. Damir Kurmanbayev, “Exact Solution of Modified Veselov–Novikov Equation and Some Applications in the Game Theory”, International Journal of Mathematics and Mathematical Sciences, 2020 (2020), 1  crossref
    8. P. G. Grinevich, R. G. Novikov, “Moutard transforms for the conductivity equation”, Lett. Math. Phys., 109:10 (2019), 2209–2222  crossref  mathscinet  isi
    9. R. G. Novikov, I. A. Taimanov, “Darboux–Moutard transformations and Poincaré–Steklov operators”, Proc. Steklov Inst. Math., 302 (2018), 315–324  mathnet  crossref  crossref  mathscinet  isi  elib
    10. A. N. Adilkhanov, I. A. Taimanov, “On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential”, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 83–92  crossref  mathscinet  isi  elib  scopus
    11. P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. P. G. Grinevich, R. G. Novikov, “Generalized Analytic Functions, Moutard-Type Transforms, and Holomorphic Maps”, Funct. Anal. Appl., 50:2 (2016), 150–152  mathnet  crossref  crossref  mathscinet  isi  elib
    13. P. G. Grinevich, R. G. Novikov, “Moutard transform for generalized analytic functions”, J. Geom. Anal., 26:4 (2016), 2984–2995  crossref  mathscinet  zmath  isi  scopus
    14. P. G. Grinevich, R. G. Novikov, “Moutard transform approach to generalized analytic functions with contour poles”, Bull. Sci. Math., 140:6 (2016), 638–656  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:606
    Full-text PDF :313
    References:93
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025