Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 183, Number 2, Pages 312–328
DOI: https://doi.org/10.4213/tmf8784
(Mi tmf8784)
 

This article is cited in 9 scientific papers (total in 9 papers)

Generation of exactly solvable potentials of the $D$-dimensional position-dependent mass Schrödinger equation using the transformation method

H. Rajbongshia, N. N. Singhb

a Nalbari College, Nalbari, Assam, India
b Gauhati University, Guwahati, Assam, India
Full-text PDF (488 kB) Citations (9)
References:
Abstract: We apply the extended transformation method to the constant-mass radial Schrödinger equation satisfied by a radially symmetric central potential in order to obtain exactly solvable quantum systems with a position-dependent mass in a space of arbitrary dimension in the nonrelativistic limit. The method consists of a coordinate transformation, a subsequent functional transformation, and a set of ansatzes for the mass function leading to the appearance of exactly solvable quantum systems with position-dependent masses. We also show that the Zhu–Kroemer ordering for the fitting parameter values is natural for systems with a radially symmetric mass function and a central potential. As an example, we apply the method to the Manning–Rosen potential and to the Morse potential with different choices of the mass functions. We also indicate an application of the method to the Hulthen potential.
Keywords: position-dependent mass, exact analytic solution, Manning–Rosen potential, Morse potential, extended transformation.
Received: 27.08.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 183, Issue 2, Pages 715–729
DOI: https://doi.org/10.1007/s11232-015-0290-2
Bibliographic databases:
PACS: 03.65.-w, 03.65.Ge, 03.65.Fd
Language: Russian
Citation: H. Rajbongshi, N. N. Singh, “Generation of exactly solvable potentials of the $D$-dimensional position-dependent mass Schrödinger equation using the transformation method”, TMF, 183:2 (2015), 312–328; Theoret. and Math. Phys., 183:2 (2015), 715–729
Citation in format AMSBIB
\Bibitem{RajSin15}
\by H.~Rajbongshi, N.~N.~Singh
\paper Generation of exactly solvable potentials of the~$D$-dimensional position-dependent mass Schr\"odinger equation using the~transformation method
\jour TMF
\yr 2015
\vol 183
\issue 2
\pages 312--328
\mathnet{http://mi.mathnet.ru/tmf8784}
\crossref{https://doi.org/10.4213/tmf8784}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399647}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...183..715R}
\elib{https://elibrary.ru/item.asp?id=23421750}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 183
\issue 2
\pages 715--729
\crossref{https://doi.org/10.1007/s11232-015-0290-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000355826000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930657210}
Linking options:
  • https://www.mathnet.ru/eng/tmf8784
  • https://doi.org/10.4213/tmf8784
  • https://www.mathnet.ru/eng/tmf/v183/i2/p312
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :150
    References:44
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024