Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2015, Volume 183, Number 1, Pages 3–35
DOI: https://doi.org/10.4213/tmf8778
(Mi tmf8778)
 

This article is cited in 23 scientific papers (total in 23 papers)

Self-consistent approach to the description of relaxation processes in classical multiparticle systems

A. V. Mokshinab

a Landau Institute for Theoretical Physics, RAS, Moscow, Russia
b Kazan (Volga Region) Federal University, Kazan, Russia
References:
Abstract: The concept of time correlation functions is a very convenient theoretical tool in describing relaxation processes in multiparticle systems because, on one hand, correlation functions are directly related to experimentally measured quantities (for example, intensities in spectroscopic studies and kinetic coefficients via the Kubo–Green relation) and, on the other hand, the concept is also applicable beyond the equilibrium case. We show that the formalism of memory functions and the method of recurrence relations allow formulating a self-consistent approach for describing relaxation processes in classical multiparticle systems without needing a priori approximations of time correlation functions by model dependences and with the satisfaction of sum rules and other physical conditions guaranteed. We also demonstrate that the approach can be used to treat the simplest relaxation scenarios and to develop microscopic theories of transport phenomena in liquids, the propagation of density fluctuations in equilibrium simple liquids, and structure relaxation in supercooled liquids. This approach generalizes the mode-coupling approximation in the Götze–Leutheusser realization and the Yulmetyev–Shurygin correlation approximations.
Keywords: relaxation process, spatial–time correlation, self-consistent description, mode-coupling approximation, disordered system, projection operator, integro-differential equation, recurrence relation.
Funding agency Grant number
Russian Science Foundation 14-12-01185
Received: 13.08.2014
English version:
Theoretical and Mathematical Physics, 2015, Volume 183, Issue 1, Pages 449–477
DOI: https://doi.org/10.1007/s11232-015-0274-2
Bibliographic databases:
PACS: 05.20.-y; 02.50.-r; 05.70.-a
Language: Russian
Citation: A. V. Mokshin, “Self-consistent approach to the description of relaxation processes in classical multiparticle systems”, TMF, 183:1 (2015), 3–35; Theoret. and Math. Phys., 183:1 (2015), 449–477
Citation in format AMSBIB
\Bibitem{Mok15}
\by A.~V.~Mokshin
\paper Self-consistent approach to the~description of relaxation processes in classical multiparticle systems
\jour TMF
\yr 2015
\vol 183
\issue 1
\pages 3--35
\mathnet{http://mi.mathnet.ru/tmf8778}
\crossref{https://doi.org/10.4213/tmf8778}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399630}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015TMP...183..449M}
\elib{https://elibrary.ru/item.asp?id=23421731}
\transl
\jour Theoret. and Math. Phys.
\yr 2015
\vol 183
\issue 1
\pages 449--477
\crossref{https://doi.org/10.1007/s11232-015-0274-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353242500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928243106}
Linking options:
  • https://www.mathnet.ru/eng/tmf8778
  • https://doi.org/10.4213/tmf8778
  • https://www.mathnet.ru/eng/tmf/v183/i1/p3
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:841
    Full-text PDF :291
    References:114
    First page:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024