Abstract:
The nonequilibrium phonon energy due to deformation interactions with hot electrons is determined. This energy depends on the lifetime of phonons with fixed momentum. Lifetimes for phonons scattered by electrons and by macroscopic and microscopic impurities are calculated using the Keldysh diagram technique.
Citation:
L. A. Zaitseva, “Nonequilibrium phonon energy in crystals with hot electrons”, TMF, 115:2 (1998), 289–304; Theoret. and Math. Phys., 115:2 (1998), 595–606
\Bibitem{Zai98}
\by L.~A.~Zaitseva
\paper Nonequilibrium phonon energy in crystals with hot electrons
\jour TMF
\yr 1998
\vol 115
\issue 2
\pages 289--304
\mathnet{http://mi.mathnet.ru/tmf874}
\crossref{https://doi.org/10.4213/tmf874}
\zmath{https://zbmath.org/?q=an:0942.82031}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 115
\issue 2
\pages 595--606
\crossref{https://doi.org/10.1007/BF02575460}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075837900011}
Linking options:
https://www.mathnet.ru/eng/tmf874
https://doi.org/10.4213/tmf874
https://www.mathnet.ru/eng/tmf/v115/i2/p289
This publication is cited in the following 13 articles:
Zaitseva L.A., “Nonequilibrium Energy of Rayleigh Waves in Half-Limited Crystals with Hot Electrons Close to the Defect Surface”, Russian Journal of Physical Chemistry B, 4:4 (2010), 532–542
Zaitseva, LA, “Mean Energy of Semibounded Solids at Equilibrium and with Hot Electrons in a Subsurface Layer”, Russian Journal of Physical Chemistry B, 2:6 (2008), 917
Alhaidari, AD, “Taming the Yukawa potential singularity: improved evaluation of bound states and resonance energies”, Journal of Physics A-Mathematical and Theoretical, 41:3 (2008), 032001
Zaitseva, LA, “The velocity of acoustic phonons in crystals with edge dislocations and point impurities”, Russian Journal of Physical Chemistry B, 1:2 (2007), 85
Kukulin, VI, “Wave-packet continuum discretization method for solving the three-body scattering problem”, Theoretical and Mathematical Physics, 150:3 (2007), 403
L. A. Zaitseva, “Rayleigh wave attenuation due to scattering by stationary defects”, Theoret. and Math. Phys., 143:2 (2005), 689–703
Zaytsev, SA, “A discrete version of the inverse scattering problem and the J-matrix method”, Inverse Problems, 21:3 (2005), 1061
L. A. Zaitseva, “Energy Spectrum Width and Nonequilibrium Energy of Rayleigh Waves Scattered on a Two-Dimensional Near-Surface Electron Layer”, Theoret. and Math. Phys., 139:2 (2004), 732–743
Broeckhove, J, “The modified J-matrix method for short range potentials”, Journal of Physics A-Mathematical and General, 37:31 (2004), 7769
L. A. Zaitseva, “Thermodynamic Energy of Semi-Infinite Solids with a Two-Dimensional Hot Electron Gas near the Surface”, Theoret. and Math. Phys., 127:2 (2001), 693–707
Zaitsev, SA, “N N potentials from inverse scattering in the J-matrix approach”, Journal of Physics G-Nuclear and Particle Physics, 27:10 (2001), 2037