Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 181, Number 3, Pages 475–486
DOI: https://doi.org/10.4213/tmf8721
(Mi tmf8721)
 

This article is cited in 59 scientific papers (total in 59 papers)

The NSVZ $\beta$-function in supersymmetric theories with different regularizations and renormalization prescriptions

A. L. Kataeva, K. V. Stepanyantzb

a Institute for Nuclear Research, RAS, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We briefly review the calculations of quantum corrections related to the exact Novikov–Shifman–Vainshtein–Zakharov (NSVZ) $\beta$-function in $\mathcal{N}=1$ supersymmetric theories, paying special attention to the scheme dependence of the results. We explain how the NSVZ relation is obtained for the renormalization group functions defined in terms of the bare coupling constant if a theory is regularized by higher derivatives. We also describe how to construct a special renormalization prescription that gives the NSVZ relation for the renormalization group functions defined in terms of the renormalized coupling constant exactly in all orders for Abelian supersymmetric theories regularized by higher derivatives and discuss the scheme dependence of the NSVZ $\beta$-function (for the renormalization group functions defined in terms of the renormalized coupling constant) in the non-Abelian case. We show that in this case, the NSVZ $\beta$-function leads to a certain scheme-independent equality.
Keywords: supersymmetry, renormalization, $\beta$-function.
Received: 31.05.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 181, Issue 3, Pages 1531–1540
DOI: https://doi.org/10.1007/s11232-014-0233-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. L. Kataev, K. V. Stepanyantz, “The NSVZ $\beta$-function in supersymmetric theories with different regularizations and renormalization prescriptions”, TMF, 181:3 (2014), 475–486; Theoret. and Math. Phys., 181:3 (2014), 1531–1540
Citation in format AMSBIB
\Bibitem{KatSte14}
\by A.~L.~Kataev, K.~V.~Stepanyantz
\paper The~NSVZ $\beta$-function in supersymmetric theories with different
regularizations and renormalization prescriptions
\jour TMF
\yr 2014
\vol 181
\issue 3
\pages 475--486
\mathnet{http://mi.mathnet.ru/tmf8721}
\crossref{https://doi.org/10.4213/tmf8721}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344550}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1531K}
\elib{https://elibrary.ru/item.asp?id=23421677}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 3
\pages 1531--1540
\crossref{https://doi.org/10.1007/s11232-014-0233-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347702500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920586465}
Linking options:
  • https://www.mathnet.ru/eng/tmf8721
  • https://doi.org/10.4213/tmf8721
  • https://www.mathnet.ru/eng/tmf/v181/i3/p475
  • This publication is cited in the following 59 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1003
    Full-text PDF :301
    References:92
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024