Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 181, Number 1, Pages 5–18
DOI: https://doi.org/10.4213/tmf8703
(Mi tmf8703)
 

Combinatorics of a strongly coupled boson system

N. M. Bogolyubov

St. Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: We introduce a quantum phase model as a limit for very strong interactions of a strongly correlated $q$-boson hopping model. We describe the general solution of the phase model and express scalar products of state vectors in determinant form. The representation of state vectors in terms of Schur functions allows obtaining a combinatorial interpretation of the scalar products in terms of nests of self-avoiding lattice paths. We show that under a special parameterization, the scalar products are equal to the generating functions of plane partitions confined in a finite box. We consider the two-dimensional vertex model related to the phase model and express the vertex model partition function with special boundary conditions in terms of the scalar product of the phase model state vectors.
Keywords: strongly interacting boson, scalar product, self-avoiding lattice path, boxed plane partition.
Received: 04.05.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 181, Issue 1, Pages 1132–1144
DOI: https://doi.org/10.1007/s11232-014-0204-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. M. Bogolyubov, “Combinatorics of a strongly coupled boson system”, TMF, 181:1 (2014), 5–18; Theoret. and Math. Phys., 181:1 (2014), 1132–1144
Citation in format AMSBIB
\Bibitem{Bog14}
\by N.~M.~Bogolyubov
\paper Combinatorics of a~strongly coupled boson system
\jour TMF
\yr 2014
\vol 181
\issue 1
\pages 5--18
\mathnet{http://mi.mathnet.ru/tmf8703}
\crossref{https://doi.org/10.4213/tmf8703}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1132B}
\elib{https://elibrary.ru/item.asp?id=22834529}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 1
\pages 1132--1144
\crossref{https://doi.org/10.1007/s11232-014-0204-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344923700001}
\elib{https://elibrary.ru/item.asp?id=24022389}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919800642}
Linking options:
  • https://www.mathnet.ru/eng/tmf8703
  • https://doi.org/10.4213/tmf8703
  • https://www.mathnet.ru/eng/tmf/v181/i1/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :161
    References:78
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024