Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 140, Number 2, Pages 284–296
DOI: https://doi.org/10.4213/tmf87
(Mi tmf87)
 

This article is cited in 17 scientific papers (total in 17 papers)

Bell's Inequality for Two-Particle Mixed Spin States

V. A. Andreev, V. I. Man'ko

P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: We derive the Bell–Clauser–Horne–Shimony–Holt inequalities for two-particle mixed spin states both in the conventional quantum mechanics and in the hidden-variables theory. We consider two cases for the vectors a, b, c, d specifying the axes onto which the particle spins of a correlated pair are projected. In the first case, all four vectors lie in the same plane, and in the second case, they are oriented arbitrarily. We compare the obtained inequalities and show that the difference between the predictions of the two theories is less for mixed states than for pure states. We find that the inequalities obtained in quantum mechanics and the hidden-variables theory coincide for some special states, in particular, for the mixed states formed by pure factorable states. We discuss the points of similarity and difference between the uncertainty relations and Bell's inequalities. We list all the states for which the right-hand side of the Bell–Clauser–Horne–Shimony–Holt inequality is identically equal to zero.
Keywords: quantum mechanics, hidden variables, Bell inequality, mixed states, spin states, quantum tomography.
Received: 03.09.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 140, Issue 2, Pages 1135–1145
DOI: https://doi.org/10.1023/B:TAMP.0000036543.69631.94
Bibliographic databases:
Language: Russian
Citation: V. A. Andreev, V. I. Man'ko, “Bell's Inequality for Two-Particle Mixed Spin States”, TMF, 140:2 (2004), 284–296; Theoret. and Math. Phys., 140:2 (2004), 1135–1145
Citation in format AMSBIB
\Bibitem{AndMan04}
\by V.~A.~Andreev, V.~I.~Man'ko
\paper Bell's Inequality for Two-Particle Mixed Spin States
\jour TMF
\yr 2004
\vol 140
\issue 2
\pages 284--296
\mathnet{http://mi.mathnet.ru/tmf87}
\crossref{https://doi.org/10.4213/tmf87}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101707}
\zmath{https://zbmath.org/?q=an:1178.81008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...140.1135A}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 140
\issue 2
\pages 1135--1145
\crossref{https://doi.org/10.1023/B:TAMP.0000036543.69631.94}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223934900007}
Linking options:
  • https://www.mathnet.ru/eng/tmf87
  • https://doi.org/10.4213/tmf87
  • https://www.mathnet.ru/eng/tmf/v140/i2/p284
  • This publication is cited in the following 17 articles:
    1. Wenjie Gong, Ganesh Parida, Zhoudunming Tu, Raju Venugopalan, “Measurement of Bell-type inequalities and quantum entanglement from Λ -hyperon spin correlations at high energy colliders”, Phys. Rev. D, 106:3 (2022)  crossref
    2. Quantum Electron., 50:5 (2020), 469–474  mathnet  crossref  isi  elib
    3. Khrennikov, A, “Nonlocality as well as rejection of realism are only sufficient (but non-necessary!) conditions for violation of Bell's inequality”, Information Sciences, 179:5 (2009), 492  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    4. Khrennikov, A, “Detection Model Based on Representation of Quantum Particles by Classical Random Fields: Born's Rule and Beyond”, Foundations of Physics, 39:9 (2009), 997  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    5. Khrennikov A., “What Does Probability Theory Tell Us About Bell's Inequality?”, Advanced Science Letters, 2:4 (2009), 488–497  crossref  mathscinet  isi
    6. Khrennikov A., “Violation of Bell's Inequality and non-Kolmogorovness”, Foundations of Probability and Physics - 5, AIP Conference Proceedings, 1101, 2009, 86–99  crossref  mathscinet  zmath  isi  scopus  scopus
    7. A. Yu. Khrennikov, “EPR–Bohm experiment and Bell's inequality: Quantum physics meets probability theory”, Theoret. and Math. Phys., 157:1 (2008), 1448–1460  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. Khrennikov A, “Einstein-Podolsky-Rosen paradox, Bell's inequality, and the projection postulate”, Journal of Russian Laser Research, 29:2 (2008), 101–113  crossref  mathscinet  isi  scopus  scopus
    9. Adenier G, “A FAIR SAMPLING TEST FOR EPR-BELL EXPERIMENTS”, Journal of Russian Laser Research, 29:5 (2008), 409–417  crossref  isi  scopus  scopus
    10. V. A. Andreev, “Generalized Bell inequality and a method for its verification”, Theoret. and Math. Phys., 152:3 (2007), 1286–1298  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Khrennikov A, “Analysis of explicit and implicit assumptions in the theorems of J. Von Neumann and J. Bell”, Journal of Russian Laser Research, 28:3 (2007), 244–254  crossref  isi  scopus  scopus
    12. Man'ko VI, Shchekin AA, “Stochastic matrices generated by entangled states of qubit-qutrit systems”, Journal of Russian Laser Research, 28:3 (2007), 255–266  crossref  mathscinet  isi  scopus  scopus
    13. Chernega VN, Man'ko VI, “Qubit portrait of qudit states and Bell inequalities”, Journal of Russian Laser Research, 28:2 (2007), 103–124  crossref  isi  scopus  scopus
    14. Khrennikov A., “Bell's inequality: Nonlocalty, “Death of Reality”, or incompatibility of random variables?”, Quantum Theory: Reconsideration of Foundations - 4, AIP Conference Proceedings, 962, 2007, 121–131  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    15. V. A. Andreev, V. I. Man'ko, O. V. Man'ko, E. V. Shchukin, “Tomography of Spin States, the Entanglement Criterion, and Bell's Inequalities”, Theoret. and Math. Phys., 146:1 (2006), 140–151  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Man'ko OV, Man'ko VI, “Probability representation and spin states of two particles”, Journal of Russian Laser Research, 27:4 (2006), 319–326  crossref  isi  scopus  scopus
    17. Man'ko O.V., Man'ko V.I., “Tomographic entropy for spin systems”, 12th Central European Workshop on Quantum Optics, Journal of Physics Conference Series, 36, 2006, 137–148  crossref  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:624
    Full-text PDF :292
    References:89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025