Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 2, Pages 186–197
DOI: https://doi.org/10.4213/tmf8693
(Mi tmf8693)
 

This article is cited in 1 scientific paper (total in 1 paper)

Finsler generalization of the Tamm metric

V. I. Panzhenskij, O. P. Surina

Penza State University, Penza, Russia
Full-text PDF (408 kB) Citations (1)
References:
Abstract: We study manifolds of the Finsler type whose tangent $($pseudo-$)$Riemannian spaces are invariant under the $($pseudo$)$orthogonal group. We construct the Cartan connection and study geodesics, extremals, and also motions. We establish that if the metric tensor of the space is a homogeneous tensor of the zeroth order with respect to the coordinates of the tangent vector, then the metric of the tangent space is realized on a cone of revolution. We describe the structure of geodesics on the cone as trajectories of motion of a free particle in a central field.
Keywords: Finsler Tamm space, Cartan connection, motion, geodesic.
Received: 04.04.2014
Revised: 03.12.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 2, Pages 1563–1573
DOI: https://doi.org/10.1134/S0040577916110039
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Panzhenskij, O. P. Surina, “Finsler generalization of the Tamm metric”, TMF, 189:2 (2016), 186–197; Theoret. and Math. Phys., 189:2 (2016), 1563–1573
Citation in format AMSBIB
\Bibitem{PanSur16}
\by V.~I.~Panzhenskij, O.~P.~Surina
\paper Finsler generalization of the~Tamm metric
\jour TMF
\yr 2016
\vol 189
\issue 2
\pages 186--197
\mathnet{http://mi.mathnet.ru/tmf8693}
\crossref{https://doi.org/10.4213/tmf8693}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1563P}
\elib{https://elibrary.ru/item.asp?id=27485050}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 2
\pages 1563--1573
\crossref{https://doi.org/10.1134/S0040577916110039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389995500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002662477}
Linking options:
  • https://www.mathnet.ru/eng/tmf8693
  • https://doi.org/10.4213/tmf8693
  • https://www.mathnet.ru/eng/tmf/v189/i2/p186
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :129
    References:57
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024