Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 189, Number 2, Pages 186–197
DOI: https://doi.org/10.4213/tmf8693
(Mi tmf8693)
 

This article is cited in 1 scientific paper (total in 1 paper)

Finsler generalization of the Tamm metric

V. I. Panzhenskij, O. P. Surina

Penza State University, Penza, Russia
Full-text PDF (408 kB) Citations (1)
References:
Abstract: We study manifolds of the Finsler type whose tangent (pseudo-)Riemannian spaces are invariant under the (pseudo)orthogonal group. We construct the Cartan connection and study geodesics, extremals, and also motions. We establish that if the metric tensor of the space is a homogeneous tensor of the zeroth order with respect to the coordinates of the tangent vector, then the metric of the tangent space is realized on a cone of revolution. We describe the structure of geodesics on the cone as trajectories of motion of a free particle in a central field.
Keywords: Finsler Tamm space, Cartan connection, motion, geodesic.
Received: 04.04.2014
Revised: 03.12.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 189, Issue 2, Pages 1563–1573
DOI: https://doi.org/10.1134/S0040577916110039
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Panzhenskij, O. P. Surina, “Finsler generalization of the Tamm metric”, TMF, 189:2 (2016), 186–197; Theoret. and Math. Phys., 189:2 (2016), 1563–1573
Citation in format AMSBIB
\Bibitem{PanSur16}
\by V.~I.~Panzhenskij, O.~P.~Surina
\paper Finsler generalization of the~Tamm metric
\jour TMF
\yr 2016
\vol 189
\issue 2
\pages 186--197
\mathnet{http://mi.mathnet.ru/tmf8693}
\crossref{https://doi.org/10.4213/tmf8693}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589029}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...189.1563P}
\elib{https://elibrary.ru/item.asp?id=27485050}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 189
\issue 2
\pages 1563--1573
\crossref{https://doi.org/10.1134/S0040577916110039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000389995500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85002662477}
Linking options:
  • https://www.mathnet.ru/eng/tmf8693
  • https://doi.org/10.4213/tmf8693
  • https://www.mathnet.ru/eng/tmf/v189/i2/p186
  • This publication is cited in the following 1 articles:
    1. V. I. Panzhenskii, S. E. Stepanov, M. V. Sorokina, “Metric Affine Spaces”, Journal of Mathematical Sciences, 245:5 (2020), 644–658  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :138
    References:61
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025