Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 180, Number 2, Pages 162–188
DOI: https://doi.org/10.4213/tmf8683
(Mi tmf8683)
 

This article is cited in 12 scientific papers (total in 12 papers)

Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams

S. Yu. Dobrokhotovab, G. N. Makrakiscd, V. E. Nazaikinskiiba

a Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
b Institute for Problems in Mechanics, RAS, Moscow, Russia
c Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
d Department of Applied Mathematics, University of Crete, Heraklion, Crete, Greece
References:
Abstract: For three-dimensional Schrödinger equations, we study how to localize exact solutions represented as the product of an Airy function (Berry–Balazs solutions) and a Bessel function and known as Airy–Bessel beams in the paraxial approximation in optics. For this, we represent such solutions in the form of Maslov's canonical operator acting on compactly supported functions on special Lagrangian manifolds. We then use a result due to Hörmander, which permits using the formula for the commutation of a pseudodifferential operator with Maslov's canonical operator to “move” the compactly supported amplitudes outside the canonical operator and thus obtain effective formulas preserving the structure based on the Airy and Bessel functions. We discuss the influence of dispersion effects on the obtained solutions.
Keywords: Schrödinger equation, paraxial approximation, Airy–Bessel beam, localization, Maslov's canonical operator.
Received: 25.03.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 180, Issue 2, Pages 894–916
DOI: https://doi.org/10.1007/s11232-014-0187-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, “Maslov's canonical operator, Hörmander's formula, and localization of the Berry–Balazs solution in the theory of wave beams”, TMF, 180:2 (2014), 162–188; Theoret. and Math. Phys., 180:2 (2014), 894–916
Citation in format AMSBIB
\Bibitem{DobMakNaz14}
\by S.~Yu.~Dobrokhotov, G.~N.~Makrakis, V.~E.~Nazaikinskii
\paper Maslov's canonical operator, H\"ormander's formula, and localization of the~Berry--Balazs solution in the~theory of wave beams
\jour TMF
\yr 2014
\vol 180
\issue 2
\pages 162--188
\mathnet{http://mi.mathnet.ru/tmf8683}
\crossref{https://doi.org/10.4213/tmf8683}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344482}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...180..894D}
\elib{https://elibrary.ru/item.asp?id=22834513}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 2
\pages 894--916
\crossref{https://doi.org/10.1007/s11232-014-0187-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000341094400002}
\elib{https://elibrary.ru/item.asp?id=23984078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906490439}
Linking options:
  • https://www.mathnet.ru/eng/tmf8683
  • https://doi.org/10.4213/tmf8683
  • https://www.mathnet.ru/eng/tmf/v180/i2/p162
  • This publication is cited in the following 12 articles:
    1. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Asymptotics of the Localized Bessel Beams and Lagrangian Manifolds”, Radiotekhnika i elektronika, 68:6 (2023), 527  crossref
    2. S. Yu. Dobrokhotov, S. A. Sergeev, “Asymptotics of the Solution of the Cauchy Problem with Localized Initial Conditions for a Wave Type Equation with Time Dispersion. I. Basic Structures”, Russ. J. Math. Phys., 29:2 (2022), 149  crossref
    3. S. Yu. Dobrokhotov, D. S. Minenkov, V. E. Nazaikinskii, “Representations of Bessel functions via the Maslov canonical operator”, Theoret. and Math. Phys., 208:2 (2021), 1018–1037  mathnet  crossref  crossref  adsnasa  isi  elib
    4. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Efficient asymptotics of solutions to the Cauchy problem with localized initial data for linear systems of differential and pseudodifferential equations”, Russian Math. Surveys, 76:5 (2021), 745–819  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Nonstandard Liouville tori and caustics in asymptotics in the form of Airy and Bessel functions for two-dimensional standing coastal waves”, St. Petersburg Math. J., 33:2 (2022), 185–205  mathnet  crossref
    6. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp”, Math. Notes, 108:3 (2020), 318–338  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    7. Dobrokhotov S.Yu. Nazaikinskii V.E. Tolchennikov A.A., “Uniform Formulas For the Asymptotic Solution of a Linear Pseudodifferential Equation Describing Water Waves Generated By a Localized Source”, Russ. J. Math. Phys., 27:2 (2020), 185–191  crossref  mathscinet  isi
    8. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems”, Theoret. and Math. Phys., 201:3 (2019), 1742–1770  mathnet  crossref  crossref  mathscinet  isi  elib
    9. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552  crossref  mathscinet  zmath  isi  scopus
    10. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “New integral representations of the Maslov canonical operator in singular charts”, Izv. Math., 81:2 (2017), 286–328  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. S. A. Sergeev, “Asymptotic Solutions of the One-Dimensional Linearized Korteweg–de Vries Equation with Localized Initial Data”, Math. Notes, 102:3 (2017), 403–416  mathnet  crossref  crossref  mathscinet  isi  elib
    12. Dobrokhotov S.Yu., Nazaikinskii V.E., Shafarevich A.I., “Maslov's canonical operator in arbitrary coordinates on the Lagrangian manifold”, Dokl. Math., 93:1 (2016), 99–102  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:952
    Full-text PDF :369
    References:120
    First page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025