|
This article is cited in 8 scientific papers (total in 8 papers)
Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case
S. Z. Pakulyakabc, E. Ragoucyde, N. A. Slavnovf a Moscow Institute of Physics
and Technology, Dolgoprudny, Moscow Oblast, Russia
b Institute of
Theoretical and Experimental Physics, Moscow, Russia
c Joint Institute for
Nuclear Research, Dubna, Moscow Oblast, Russia
d CNRS — Université de Savoie, Annecy-le-Vieux, France
e Laboratoire d'Annecy-le-Vieux de Physique Théorique
f Steklov Mathematical Institute, RAS, Moscow, Russia
Abstract:
We study quantum integrable models with the $GL(3)$ trigonometric $R$-matrix solvable by the nested algebraic Bethe ansatz and obtain an explicit representation for a scalar product of generic Bethe vectors in terms of a sum over partitions of Bethe parameters. This representation generalizes the known formula for scalar products in models with the $GL(3)$-invariant $R$-matrix.
Keywords:
nested Bethe ansatz, Bethe vector, scalar products.
Received: 12.02.2014
Citation:
S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ trigonometric $R$-matrix: General case”, TMF, 180:1 (2014), 51–71; Theoret. and Math. Phys., 180:1 (2014), 795–814
Linking options:
https://www.mathnet.ru/eng/tmf8651https://doi.org/10.4213/tmf8651 https://www.mathnet.ru/eng/tmf/v180/i1/p51
|
Statistics & downloads: |
Abstract page: | 529 | Full-text PDF : | 165 | References: | 69 | First page: | 15 |
|