Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 181, Number 1, Pages 86–120
DOI: https://doi.org/10.4213/tmf8648
(Mi tmf8648)
 

This article is cited in 8 scientific papers (total in 8 papers)

Darboux coordinates, Yang–Yang functional, and gauge theory

N. A. Nekrasova, A. A. Roslyibc, S. L. Shatashvilidecfg

a Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY, USA
b Institute for Theoretical and Experimental Physics, Moscow, Russia
c Institute for Theoretical and Experimental Physics, Moscow, Russia
d Euler International Mathematical Institute, St. Petersburg, Russia
e Louis Michel Chair, IHES, Bures-sur-Yvette
f The Hamilton Mathematics Institute, Trinity College, Dublin, Ireland
g School of Mathematics, Trinity College, Dublin, Ireland
Full-text PDF (774 kB) Citations (8)
References:
Abstract: The moduli space of flat SL2 connections on a punctured Riemann surface Σ with fixed conjugacy classes of the monodromies around the punctures is endowed with a system of holomorphic Darboux coordinates in which the generating function of the variety of SL2-opers is identified with the universal part of the effective twisted superpotential of the corresponding four-dimensional N=2 supersymmetric theory subject to the two-dimensional Ω-deformation. This allows defining the Yang–Yang functionals for the quantum Hitchin system in terms of the classical geometry of the moduli space of local systems for the dual gauge group and relating it to the instanton counting of the four-dimensional gauge theories in the rank-one case.
Keywords: gauge theory, supersymmetry, Hitchin integrable system, Darboux variable, quantization.
Received: 01.02.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 181, Issue 1, Pages 1206–1234
DOI: https://doi.org/10.1007/s11232-014-0209-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. A. Nekrasov, A. A. Roslyi, S. L. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory”, TMF, 181:1 (2014), 86–120; Theoret. and Math. Phys., 181:1 (2014), 1206–1234
Citation in format AMSBIB
\Bibitem{NekRosSha14}
\by N.~A.~Nekrasov, A.~A.~Roslyi, S.~L.~Shatashvili
\paper Darboux coordinates, Yang--Yang functional, and gauge theory
\jour TMF
\yr 2014
\vol 181
\issue 1
\pages 86--120
\mathnet{http://mi.mathnet.ru/tmf8648}
\crossref{https://doi.org/10.4213/tmf8648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344466}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...181.1206N}
\elib{https://elibrary.ru/item.asp?id=22834534}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 181
\issue 1
\pages 1206--1234
\crossref{https://doi.org/10.1007/s11232-014-0209-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344923700006}
\elib{https://elibrary.ru/item.asp?id=24027594}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920182815}
Linking options:
  • https://www.mathnet.ru/eng/tmf8648
  • https://doi.org/10.4213/tmf8648
  • https://www.mathnet.ru/eng/tmf/v181/i1/p86
  • This publication is cited in the following 8 articles:
    1. Davide Gaiotto, Edward Witten, “Gauge Theory and the Analytic Form of the Geometric Langlands Program”, Ann. Henri Poincaré, 25:1 (2024), 557  crossref
    2. Anton Alekseev, Andrew Neitzke, Xiaomeng Xu, Yan Zhou, “WKB Asymptotics of Stokes Matrices, Spectral Curves and Rhombus Inequalities”, Commun. Math. Phys., 405:11 (2024)  crossref
    3. Alba Grassi, Qianyu Hao, Andrew Neitzke, “Exponential Networks, WKB and Topological String”, SIGMA, 19 (2023), 064, 44 pp.  mathnet  crossref
    4. Grassi A., Hao Q., Neitzke A., “Exact Wkb Methods in Su(2) N-F=1”, J. High Energy Phys., 2022, no. 1, 046  crossref  mathscinet  isi
    5. Mikhail Bershtein, Pavlo Gavrylenko, Alba Grassi, “Quantum Spectral Problems and Isomonodromic Deformations”, Commun. Math. Phys., 393:1 (2022), 347  crossref
    6. Bruno Le Floch, “A slow review of the AGT correspondence”, J. Phys. A: Math. Theor., 55:35 (2022), 353002  crossref
    7. Huang M.-x., Katz Sh., Klemm A., “Towards Refining the Topological Strings on Compact Calabi-Yau 3-Folds”, J. High Energy Phys., 2021, no. 3, 266  crossref  mathscinet  isi
    8. Menotti P., “Classical conformal blocks”, Mod. Phys. Lett. A, 31:27 (2016), 1650159  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:652
    Full-text PDF :280
    References:98
    First page:49
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025