Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 180, Number 3, Pages 368–381
DOI: https://doi.org/10.4213/tmf8642
(Mi tmf8642)
 

This article is cited in 10 scientific papers (total in 10 papers)

Wave functions and eigenvalues of charge carriers in a nanotube in a neighborhood of the Dirac point in the presence of a longitudinal electric field

N. R. Sadykov

Snezhinsk Physics and Technology Institute, National Research Nuclear Institute "MEPhI," Snezhinsk, Chelyabinsk Oblast, Russia
References:
Abstract: Based on the Hamiltonian for charge carriers in carbon nanotubes with finite lengths, we obtain eigenvalues and eigenfunctions in a neighborhood of the Dirac points (wave functions written analogously to the two-component Dirac wave function are expressed in terms of Hermite polynomials, and the spectrum is equidistant) in the presence of a longitudinal electric field. We express the solution in terms of the Hermite functions in the case of carbon nanotubes with infinite lengths. Based on the obtained wave function for an elongated nanotube, we consider the problem of determining the coefficient of charge carrier transport through the nanotube. The results of finding the transport coefficient can also be applied to other nanoparticles, in particular, to carbon chains and nanotapes. We propose to use the eigenvalues and eigenfunctions of nanotubes with finite lengths to consider the problem of radiation generation in a nonlinear medium based on an array of such noninteracting nanotubes.
Keywords: two-wave Dirac wave function, nanotube array, nanotape, transport coefficient.
Received: 18.01.2014
Revised: 17.03.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 180, Issue 3, Pages 1073–1085
DOI: https://doi.org/10.1007/s11232-014-0200-z
Bibliographic databases:
Language: Russian
Citation: N. R. Sadykov, “Wave functions and eigenvalues of charge carriers in a nanotube in a neighborhood of the Dirac point in the presence of a longitudinal electric field”, TMF, 180:3 (2014), 368–381; Theoret. and Math. Phys., 180:3 (2014), 1073–1085
Citation in format AMSBIB
\Bibitem{Sad14}
\by N.~R.~Sadykov
\paper Wave functions and eigenvalues of charge carriers in a~nanotube in a~neighborhood of the~Dirac point in the~presence of a~longitudinal electric field
\jour TMF
\yr 2014
\vol 180
\issue 3
\pages 368--381
\mathnet{http://mi.mathnet.ru/tmf8642}
\crossref{https://doi.org/10.4213/tmf8642}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344478}
\elib{https://elibrary.ru/item.asp?id=22834526}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 180
\issue 3
\pages 1073--1085
\crossref{https://doi.org/10.1007/s11232-014-0200-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000343643800006}
\elib{https://elibrary.ru/item.asp?id=24022303}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919784601}
Linking options:
  • https://www.mathnet.ru/eng/tmf8642
  • https://doi.org/10.4213/tmf8642
  • https://www.mathnet.ru/eng/tmf/v180/i3/p368
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:510
    Full-text PDF :212
    References:88
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024