Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 2, Pages 207–224
DOI: https://doi.org/10.4213/tmf8632
(Mi tmf8632)
 

This article is cited in 5 scientific papers (total in 5 papers)

Operator method for calculating $Q$ symbols and their relation to Weyl–Wigner symbols and symplectic tomogram symbols

V. A. Andreeva, L. D. Davidovichb, Milena D. Davidovichc, Miloš D. Davidovicd, V. I. Man'koa, M. A. Man'koa

a Lebedev Physical Institute, RAS, Moscow, Russia
b Institute of Physics, University of Belgrade, Belgrade, Serbia
c Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia
d Institute for Nuclear Sciences Vinсa, University of Belgrade, Belgrade, Serbia
Full-text PDF (419 kB) Citations (5)
References:
Abstract: We propose a new method for calculating Husimi symbols of operators. In contrast to the standard method, it does not require using the anti-normal-ordering procedure. According to this method, the coordinate and momentum operators $\hat q$ and $\hat p$ are assigned other operators $\widehat X$ and $\widehat P$ satisfying the same commutation relations. We then find the result of acting with the $\widehat X$ and $\widehat P$ operators and also polynomials in these operators on the Husimi function. After the obtained expression is integrated over the phase space coordinates, the integrand becomes a Husimi function times the symbol of the operator chosen to act on that function. We explicitly evaluate the Husimi symbols for operators that are powers of $\widehat X$ or $\widehat P$.
Keywords: quantum mechanics, Husimi function, Wigner function, symplectic tomogram, scaling transformation.
Received: 17.12.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 2, Pages 559–573
DOI: https://doi.org/10.1007/s11232-014-0162-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Andreev, L. D. Davidovich, Milena D. Davidovich, Miloš D. Davidovic, V. I. Man'ko, M. A. Man'ko, “Operator method for calculating $Q$ symbols and their relation to Weyl–Wigner symbols and symplectic tomogram symbols”, TMF, 179:2 (2014), 207–224; Theoret. and Math. Phys., 179:2 (2014), 559–573
Citation in format AMSBIB
\Bibitem{AndDavDav14}
\by V.~A.~Andreev, L.~D.~Davidovich, Milena~D.~Davidovich, Milo{\v s}~D.~Davidovic, V.~I.~Man'ko, M.~A.~Man'ko
\paper Operator method for calculating $Q$ symbols and their relation to
Weyl--Wigner symbols and symplectic tomogram symbols
\jour TMF
\yr 2014
\vol 179
\issue 2
\pages 207--224
\mathnet{http://mi.mathnet.ru/tmf8632}
\crossref{https://doi.org/10.4213/tmf8632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301490}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..559A}
\elib{https://elibrary.ru/item.asp?id=21826678}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 2
\pages 559--573
\crossref{https://doi.org/10.1007/s11232-014-0162-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927604217}
Linking options:
  • https://www.mathnet.ru/eng/tmf8632
  • https://doi.org/10.4213/tmf8632
  • https://www.mathnet.ru/eng/tmf/v179/i2/p207
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :162
    References:93
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024