Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 2, Pages 207–224
DOI: https://doi.org/10.4213/tmf8632
(Mi tmf8632)
 

This article is cited in 5 scientific papers (total in 5 papers)

Operator method for calculating Q symbols and their relation to Weyl–Wigner symbols and symplectic tomogram symbols

V. A. Andreeva, L. D. Davidovichb, Milena D. Davidovichc, Miloš D. Davidovicd, V. I. Man'koa, M. A. Man'koa

a Lebedev Physical Institute, RAS, Moscow, Russia
b Institute of Physics, University of Belgrade, Belgrade, Serbia
c Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia
d Institute for Nuclear Sciences Vinсa, University of Belgrade, Belgrade, Serbia
Full-text PDF (419 kB) Citations (5)
References:
Abstract: We propose a new method for calculating Husimi symbols of operators. In contrast to the standard method, it does not require using the anti-normal-ordering procedure. According to this method, the coordinate and momentum operators q^ and p^ are assigned other operators X^ and P^ satisfying the same commutation relations. We then find the result of acting with the X^ and P^ operators and also polynomials in these operators on the Husimi function. After the obtained expression is integrated over the phase space coordinates, the integrand becomes a Husimi function times the symbol of the operator chosen to act on that function. We explicitly evaluate the Husimi symbols for operators that are powers of X^ or P^.
Keywords: quantum mechanics, Husimi function, Wigner function, symplectic tomogram, scaling transformation.
Received: 17.12.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 2, Pages 559–573
DOI: https://doi.org/10.1007/s11232-014-0162-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Andreev, L. D. Davidovich, Milena D. Davidovich, Miloš D. Davidovic, V. I. Man'ko, M. A. Man'ko, “Operator method for calculating Q symbols and their relation to Weyl–Wigner symbols and symplectic tomogram symbols”, TMF, 179:2 (2014), 207–224; Theoret. and Math. Phys., 179:2 (2014), 559–573
Citation in format AMSBIB
\Bibitem{AndDavDav14}
\by V.~A.~Andreev, L.~D.~Davidovich, Milena~D.~Davidovich, Milo{\v s}~D.~Davidovic, V.~I.~Man'ko, M.~A.~Man'ko
\paper Operator method for calculating $Q$ symbols and their relation to
Weyl--Wigner symbols and symplectic tomogram symbols
\jour TMF
\yr 2014
\vol 179
\issue 2
\pages 207--224
\mathnet{http://mi.mathnet.ru/tmf8632}
\crossref{https://doi.org/10.4213/tmf8632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301490}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..559A}
\elib{https://elibrary.ru/item.asp?id=21826678}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 2
\pages 559--573
\crossref{https://doi.org/10.1007/s11232-014-0162-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927604217}
Linking options:
  • https://www.mathnet.ru/eng/tmf8632
  • https://doi.org/10.4213/tmf8632
  • https://www.mathnet.ru/eng/tmf/v179/i2/p207
  • This publication is cited in the following 5 articles:
    1. Adam P. Andreev V.A. Man'ko M.A. Man'ko V.I. Mechler M., “Star-Product Formalism For the Probability and Mean-Value Representations of Qudits”, J. Russ. Laser Res., 41:5 (2020), 470–483  crossref  isi
    2. V. A. Andreev, D. M. Davidović, L. D. Davidović, Milena D. Davidović, Miloš D. Davidović, “Scale transformations in phase space and stretched states of a harmonic oscillator”, Theoret. and Math. Phys., 192:1 (2017), 1080–1096  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. P. Adam, V. A. Andreev, A. Isar, M. A. Man'ko, V. I. Man'ko, “Minimal sets of dequantizers and quantizers for finite-dimensional quantum systems”, Phys. Lett. A, 381:34 (2017), 2778–2782  crossref  mathscinet  zmath  isi  scopus
    4. P. Adam, V. A. Andreev, A. Isar, V. I. Man'ko, M. A. Man'ko, “Star product, discrete Wigner functions, and spin-system tomograms”, Theoret. and Math. Phys., 186:3 (2016), 346–364  mathnet  crossref  crossref  mathscinet  isi  elib
    5. V. A. Andreev, D. M. Davidovic, L. D. Davidovic, M. D. Davidovic, M. D. Davidovic, S. D. Zotov, “Scaling transform and stretched states in quantum mechanics”, J. Russ. Laser Res., 37:5 (2016), 434–439  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:491
    Full-text PDF :170
    References:94
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025