Abstract:
We propose a new method for calculating Husimi symbols of operators. In contrast to the standard method, it does not require using the anti-normal-ordering procedure. According to this method, the coordinate and momentum operators ^q and ^p are assigned other operators ˆX and ˆP satisfying the same commutation relations. We then find the result of acting with the ˆX and ˆP operators and also polynomials in these operators on the Husimi function. After the obtained expression is integrated over the phase space coordinates, the integrand becomes a Husimi function times the symbol of the operator chosen to act on that function. We explicitly evaluate the Husimi symbols for operators that are powers of ˆX or ˆP.
Citation:
V. A. Andreev, L. D. Davidovich, Milena D. Davidovich, Miloš D. Davidovic, V. I. Man'ko, M. A. Man'ko, “Operator method for calculating Q symbols and their relation to
Weyl–Wigner symbols and symplectic tomogram symbols”, TMF, 179:2 (2014), 207–224; Theoret. and Math. Phys., 179:2 (2014), 559–573
\Bibitem{AndDavDav14}
\by V.~A.~Andreev, L.~D.~Davidovich, Milena~D.~Davidovich, Milo{\v s}~D.~Davidovic, V.~I.~Man'ko, M.~A.~Man'ko
\paper Operator method for calculating $Q$ symbols and their relation to
Weyl--Wigner symbols and symplectic tomogram symbols
\jour TMF
\yr 2014
\vol 179
\issue 2
\pages 207--224
\mathnet{http://mi.mathnet.ru/tmf8632}
\crossref{https://doi.org/10.4213/tmf8632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301490}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..559A}
\elib{https://elibrary.ru/item.asp?id=21826678}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 2
\pages 559--573
\crossref{https://doi.org/10.1007/s11232-014-0162-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927604217}
Linking options:
https://www.mathnet.ru/eng/tmf8632
https://doi.org/10.4213/tmf8632
https://www.mathnet.ru/eng/tmf/v179/i2/p207
This publication is cited in the following 5 articles:
Adam P. Andreev V.A. Man'ko M.A. Man'ko V.I. Mechler M., “Star-Product Formalism For the Probability and Mean-Value Representations of Qudits”, J. Russ. Laser Res., 41:5 (2020), 470–483
V. A. Andreev, D. M. Davidović, L. D. Davidović, Milena D. Davidović, Miloš D. Davidović, “Scale transformations in phase space and stretched states of a harmonic oscillator”, Theoret. and Math. Phys., 192:1 (2017), 1080–1096
P. Adam, V. A. Andreev, A. Isar, M. A. Man'ko, V. I. Man'ko, “Minimal sets of dequantizers and quantizers for finite-dimensional quantum systems”, Phys. Lett. A, 381:34 (2017), 2778–2782
P. Adam, V. A. Andreev, A. Isar, V. I. Man'ko, M. A. Man'ko, “Star product, discrete Wigner functions, and spin-system tomograms”, Theoret. and Math. Phys., 186:3 (2016), 346–364
V. A. Andreev, D. M. Davidovic, L. D. Davidovic, M. D. Davidovic, M. D. Davidovic, S. D. Zotov, “Scaling transform and stretched states in quantum mechanics”, J. Russ. Laser Res., 37:5 (2016), 434–439