Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 3, Pages 406–425
DOI: https://doi.org/10.4213/tmf8631
(Mi tmf8631)
 

This article is cited in 3 scientific papers (total in 3 papers)

Eigenstates of the quantum Penning–Ioffe nanotrap at resonance

M. V. Karasev, E. M. Novikova

Higher School of Economics, Moscow, Russia
Full-text PDF (511 kB) Citations (3)
References:
Abstract: We discuss the choice of physical parameters of a quantum Penning nanotrap under the action of a perturbing inhomogeneous Ioffe magnetic field and also the role of frequency resonance modes. We present a general scheme for constructing the asymptotic behavior of the eigenstates by the generalized geometric quantization method and obtain the reproducing measure in the integral representation of eigenfunctions.
Keywords: nanotrap, resonance, quantum averaging, symmetry algebra, irreducible representation, reproducing measure.
Received: 17.12.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 3, Pages 729–746
DOI: https://doi.org/10.1007/s11232-014-0174-x
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Karasev, E. M. Novikova, “Eigenstates of the quantum Penning–Ioffe nanotrap at resonance”, TMF, 179:3 (2014), 406–425; Theoret. and Math. Phys., 179:3 (2014), 729–746
Citation in format AMSBIB
\Bibitem{KarNov14}
\by M.~V.~Karasev, E.~M.~Novikova
\paper Eigenstates of the~quantum Penning--Ioffe nanotrap at resonance
\jour TMF
\yr 2014
\vol 179
\issue 3
\pages 406--425
\mathnet{http://mi.mathnet.ru/tmf8631}
\crossref{https://doi.org/10.4213/tmf8631}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..729K}
\elib{https://elibrary.ru/item.asp?id=21826690}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 3
\pages 729--746
\crossref{https://doi.org/10.1007/s11232-014-0174-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338842800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903837536}
Linking options:
  • https://www.mathnet.ru/eng/tmf8631
  • https://doi.org/10.4213/tmf8631
  • https://www.mathnet.ru/eng/tmf/v179/i3/p406
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024