Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 1, Pages 123–133
DOI: https://doi.org/10.4213/tmf8608
(Mi tmf8608)
 

This article is cited in 5 scientific papers (total in 5 papers)

Dynamical phase transition in the simplest molecular chain model

V. A. Malyshev, S. A. Muzychka

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (414 kB) Citations (5)
References:
Abstract: We consider the dynamics of the simplest chain of a large number NN of particles. In the double scaling limit, we find the partition of the parameter space into two domains: for one domain, the supremum over the time interval (0,)(0,) of the relative extension of the chain tends to 11 as NN, and for the other domain, to infinity.
Keywords: statistical physics, double scaling limit, dynamical phase transition, Hooke's law, molecular chain.
Received: 31.10.2013
Revised: 24.11.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 1, Pages 490–499
DOI: https://doi.org/10.1007/s11232-014-0157-y
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Malyshev, S. A. Muzychka, “Dynamical phase transition in the simplest molecular chain model”, TMF, 179:1 (2014), 123–133; Theoret. and Math. Phys., 179:1 (2014), 490–499
Citation in format AMSBIB
\Bibitem{MalMuz14}
\by V.~A.~Malyshev, S.~A.~Muzychka
\paper Dynamical phase transition in the~simplest molecular chain model
\jour TMF
\yr 2014
\vol 179
\issue 1
\pages 123--133
\mathnet{http://mi.mathnet.ru/tmf8608}
\crossref{https://doi.org/10.4213/tmf8608}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3301502}
\zmath{https://zbmath.org/?q=an:1298.82046}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..490M}
\elib{https://elibrary.ru/item.asp?id=21826672}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 1
\pages 490--499
\crossref{https://doi.org/10.1007/s11232-014-0157-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337055500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899987013}
Linking options:
  • https://www.mathnet.ru/eng/tmf8608
  • https://doi.org/10.4213/tmf8608
  • https://www.mathnet.ru/eng/tmf/v179/i1/p123
  • This publication is cited in the following 5 articles:
    1. F. Aurzada, V. Betz, M. A. Lifshits, “Breaking a chain of interacting Brownian particles: a Gumbel limit theorem”, Theory Probab. Appl., 66:2 (2021), 184–208  mathnet  crossref  crossref  zmath  isi
    2. Aurzada F., Betz V., Lifshits M., “Universal Break Law For a Class of Models of Polymer Rupture”, J. Phys. A-Math. Theor., 54:30 (2021), 305204  crossref  mathscinet  isi
    3. Malyshev V.A., Petrova E.N., Pirogov S.A., “Asymptotically Solid Systems of Point Particles”, Markov Process. Relat. Fields, 26:2, SI (2020), 305–313  mathscinet  isi
    4. A.A. Lykov, V.A. Malyshev, M.V. Melikian, “Phase diagram for one-way traffic flow with local control”, Physica A: Statistical Mechanics and its Applications, 486 (2017), 849  crossref
    5. A. A. Lykov, V. A. Malyshev, M. V. Melikian, Communications in Computer and Information Science, 601, Distributed Computer and Communication Networks, 2016, 289  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:501
    Full-text PDF :207
    References:79
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025