Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 178, Number 1, Pages 3–68
DOI: https://doi.org/10.4213/tmf8588
(Mi tmf8588)
 

This article is cited in 72 scientific papers (total in 72 papers)

Cabling procedure for the colored HOMFLY polynomials

A. S. Anokhinaab, A. A. Morozovca

a Institute for Theoretical and Experimental Physics, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
c Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We discuss using the cabling procedure to calculate colored HOMFLY polynomials. We describe how it can be used and how the projectors and $\mathcal R$-matrices needed for this procedure can be found. The constructed matrix expressions for the projectors and $\mathcal R$-matrices in the fundamental representation allow calculating the HOMFLY polynomial in an arbitrary representation for an arbitrary knot. The computational algorithm can be used for the knots and links with $|Q|m\le12$, where $m$ is the number of strands in a braid representation of the knot and $|Q|$ is the number of boxes in the Young diagram of the representation. We also discuss the justification of the cabling procedure from the group theory standpoint, deriving expressions for the fundamental $\mathcal R$-matrices and clarifying some conjectures formulated in previous papers.
Keywords: Chern–Simons theory, knot theory, representation theory.
Received: 27.08.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 178, Issue 1, Pages 1–58
DOI: https://doi.org/10.1007/s11232-014-0129-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Anokhina, A. A. Morozov, “Cabling procedure for the colored HOMFLY polynomials”, TMF, 178:1 (2014), 3–68; Theoret. and Math. Phys., 178:1 (2014), 1–58
Citation in format AMSBIB
\Bibitem{AnoMor14}
\by A.~S.~Anokhina, A.~A.~Morozov
\paper Cabling procedure for the~colored HOMFLY polynomials
\jour TMF
\yr 2014
\vol 178
\issue 1
\pages 3--68
\mathnet{http://mi.mathnet.ru/tmf8588}
\crossref{https://doi.org/10.4213/tmf8588}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3302459}
\zmath{https://zbmath.org/?q=an:06353926}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...178....1A}
\elib{https://elibrary.ru/item.asp?id=21277095}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 178
\issue 1
\pages 1--58
\crossref{https://doi.org/10.1007/s11232-014-0129-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332122900001}
\elib{https://elibrary.ru/item.asp?id=21866718}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894657501}
Linking options:
  • https://www.mathnet.ru/eng/tmf8588
  • https://doi.org/10.4213/tmf8588
  • https://www.mathnet.ru/eng/tmf/v178/i1/p3
  • This publication is cited in the following 72 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:736
    Full-text PDF :245
    References:101
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024