Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 3, Pages 317–349
DOI: https://doi.org/10.4213/tmf8570
(Mi tmf8570)
 

This article is cited in 14 scientific papers (total in 14 papers)

Quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy

X. Zeng, X. Geng

Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
References:
Abstract: Using the Lax matrix and elliptic variables, we decompose the discrete Chen–Lee–Liu hierarchy into solvable ordinary differential equations. Based on the theory of the algebraic curve, we straighten the continuous and discrete flows related to the discrete Chen–Lee–Liu hierarchy in Abel–Jacobi coordinates. We introduce the meromorphic function ϕϕ, Baker–Akhiezer vector ˉψ¯ψ, and hyperelliptic curve KNKN according to whose asymptotic properties and the algebro-geometric characters we construct quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy.
Keywords: discrete Chen–Lee–Liu equation, quasiperiodic solution.
Received: 02.07.2013
Revised: 20.12.2013
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 3, Pages 649–678
DOI: https://doi.org/10.1007/s11232-014-0169-7
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: X. Zeng, X. Geng, “Quasiperiodic solutions of the discrete Chen–Lee–Liu hierarchy”, TMF, 179:3 (2014), 317–349; Theoret. and Math. Phys., 179:3 (2014), 649–678
Citation in format AMSBIB
\Bibitem{ZenGen14}
\by X.~Zeng, X.~Geng
\paper Quasiperiodic solutions of the~discrete Chen--Lee--Liu hierarchy
\jour TMF
\yr 2014
\vol 179
\issue 3
\pages 317--349
\mathnet{http://mi.mathnet.ru/tmf8570}
\crossref{https://doi.org/10.4213/tmf8570}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3305754}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..649Z}
\elib{https://elibrary.ru/item.asp?id=21826685}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 3
\pages 649--678
\crossref{https://doi.org/10.1007/s11232-014-0169-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338842800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903845643}
Linking options:
  • https://www.mathnet.ru/eng/tmf8570
  • https://doi.org/10.4213/tmf8570
  • https://www.mathnet.ru/eng/tmf/v179/i3/p317
  • This publication is cited in the following 14 articles:
    1. Souleymanou Abbagari, Alphonse Houwe, Lanre Akinyemi, Serge Yamigno Doka, Bouetou Thomas Bouetou, “Dynamics of chirped solitary waves: bifurcation and chaos in nonlinear chains with Morse potential”, Phys. Scr., 100:2 (2025), 025255  crossref
    2. Alphonse Houwe, Souleymanou Abbagari, Lanre Akinyemi, Serge Yamigno Doka, Ahmed Sayed M. Metwally, Hijaz Ahmad, “Bifurcation and chaotic patterns of the solitary waves in nonlinear electrical transmission line lattice”, Chaos, Solitons & Fractals, 186 (2024), 115231  crossref
    3. R Kumar, R Kumar, A Bansal, A Biswas, Y Yildirim, S Moshokoa, A Asim Asiri, “Optical solitons and group invariants for Chen-Lee-Liu equation with time-dependent chromatic dispersion and nonlinearity by Lie symmetry”, Ukr. J. Phys. Opt., 24:4 (2023), 04021  crossref
    4. Younis M., Younas U., Bilal M., Rehman S.U., Rizvi S.T.R., “Investigation of Optical Solitons With Chen-Lee-Liu Equation of Monomode Fibers By Five Free Parameters”, Indian J. Phys., 96:5 (2022), 1539–1546  crossref  isi
    5. Dianlou Du, Xue Wang, “A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation”, Theoret. and Math. Phys., 211:3 (2022), 745–757  mathnet  crossref  crossref  mathscinet  adsnasa
    6. Baskonus H.M., Osman M.S., Rehman H.u., Ramzan M., Tahir M., Ashraf Sh., “On Pulse Propagation of Soliton Wave Solutions Related to the Perturbed Chen-Lee-Liu Equation in An Optical Fiber”, Opt. Quantum Electron., 53:10 (2021), 556  crossref  isi
    7. Rehman H.U., Bibi M., Saleem M.Sh., Rezazadeh H., Adel W., “New Optical Soliton Solutions of the Chen-Lee-Liu Equation”, Int. J. Mod. Phys. B, 35:18 (2021), 2150184  crossref  mathscinet  isi
    8. Bilal M., Hu W., Ren J., “Different Wave Structures to the Chen-Lee-Liu Equation of Monomode Fibers and Its Modulation Instability Analysis”, Eur. Phys. J. Plus, 136:4 (2021), 385  crossref  isi
    9. Depelair B., Gambo B., Nsangou M., “Effects of Fractional Temporal Evolution on Chirped Soliton Solutions of the Chen-Lee-Liu Equation”, Phys. Scr., 96:10 (2021), 105215  crossref  isi  scopus
    10. Bansal A., Biswas A., Zhou Q., Arshed S., Alzahrani A.K., Belic M.R., “Optical Solitons With Chen-Lee-Liu Equation By Lie Symmetry”, Phys. Lett. A, 384:10 (2020), 126202  crossref  mathscinet  isi
    11. Yildirim Ya., Biswas A., Asma M., Ekici M., Ntsime B.P., Zayed E.M.E., Moshokoa S.P., Alzahrani A.K., Belic M.R., “Optical Soliton Perturbation With Chen-Lee-Liu Equation”, Optik, 220 (2020), 165177  crossref  isi
    12. Jawad Anwar Ja'afar Mohamad, Biswas A., Zhou Q., Alfiras M., Moshokoa S.P., Belic M., “Chirped singular and combo optical solitons for chen-lee-liu equation with three forms of integration architecture”, Optik, 178 (2019), 172–177  crossref  isi  scopus
    13. N. Liu, X.-Y. Wen, Ya. Liu, “Fission and fusion interaction phenomena of the discrete kink multi-soliton solutions for the Chen-Lee-Liu lattice equation”, Mod. Phys. Lett. B, 32:19 (2018), 1850211  crossref  mathscinet  isi  scopus
    14. A. Biswas, “Chirp-free bright optical soliton perturbation with Chen-Lee-Liu equation by traveling wave hypothesis and semi-inverse variational principle”, Optik, 172 (2018), 772–776  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :175
    References:60
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025