Abstract:
We construct new sets of rank n-representations of the Temperley–Lieb algebra TLN(q) that are characterized by two matrices with a generalized complex Hadamard property. We give partial classifications for the two matrices, in particular, in the case where they reduce to Fourier or Butson matrices.
Citation:
J. Avan, T. Fonseca, L. Frappat, P. P. Kulish, Э. Ragoucy, G. Rollet, “Temperley–Lieb R-matrices from generalized Hadamard matrices”, TMF, 178:2 (2014), 255–273; Theoret. and Math. Phys., 178:2 (2014), 223–238
This publication is cited in the following 8 articles:
Bytsko A., “A Relation For the Jones-Wenzl Projector and Tensor Space Representations of the Temperley-Lieb Algebra”, Linear Multilinear Algebra, 68:11 (2020), 2239–2253
N. Kitanine, R. I. Nepomechie, N. Reshetikhin, “Quantum integrability and quantum groups: a special issue in memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201
T. Banica, “Complex Hadamard matrices with noncommutative entries”, Ann. Funct. Anal., 9:3 (2018), 354–368
T. Banica, D. Ozteke, L. Pittau, “Isolated partial Hadamard matrices and related topics”, Open Syst. Inf. Dyn., 25:2 (2018), 1850009
“Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19
Bytsko A., “Tensor Space Representations of Temperley-Lieb Algebra Via Orthogonal Projections of Rank R >= 1”, J. Math. Phys., 56:8 (2015), 083502
Bytsko A., “Tensor Space Representations of Temperley-Lieb Algebra and Generalized Permutation Matrices”, J. Math. Phys., 56:8 (2015), 083503
J. Avan, P. P. Kulish, G. Rollet, “Reflection matrices from Hadamard-type Temperley–Lieb R-matrices”, Theoret. and Math. Phys., 179:1 (2014), 387–394