|
This article is cited in 7 scientific papers (total in 8 papers)
Temperley–Lieb $R$-matrices from generalized Hadamard matrices
J. Avana, T. Fonsecab, L. Frappatb, P. P. Kulishc, Э. Ragoucyab, G. Rolleta a Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, Cergy-Pontoise, France
b Laboratoire d'Annecy-le-Vieux de Physique Théorique, CNRS — Université de Savoie, Annecy-le-Vieux, France
c St. Petersburg Department of the~Steklov Institute of
Mathematics, St. Petersburg, Russia
Abstract:
We construct new sets of rank $n$-representations of the Temperley–Lieb algebra $TL_N(q)$ that are characterized by two matrices with a generalized complex Hadamard property. We give partial classifications for the two matrices, in particular, in the case where they reduce to Fourier or Butson matrices.
Keywords:
Yang–Baxter equation, Temperley–Lieb algebra, $R$-matrix, Hadamard matrix.
Received: 18.06.2013
Citation:
J. Avan, T. Fonseca, L. Frappat, P. P. Kulish, Э. Ragoucy, G. Rollet, “Temperley–Lieb $R$-matrices from generalized Hadamard matrices”, TMF, 178:2 (2014), 255–273; Theoret. and Math. Phys., 178:2 (2014), 223–238
Linking options:
https://www.mathnet.ru/eng/tmf8564https://doi.org/10.4213/tmf8564 https://www.mathnet.ru/eng/tmf/v178/i2/p255
|
Statistics & downloads: |
Abstract page: | 500 | Full-text PDF : | 165 | References: | 71 | First page: | 41 |
|