Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2014, Volume 179, Number 3, Pages 367–386
DOI: https://doi.org/10.4213/tmf8557
(Mi tmf8557)
 

This article is cited in 5 scientific papers (total in 5 papers)

Elastic scattering and the path integral

G. V. Efimov

Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
Full-text PDF (548 kB) Citations (5)
References:
Abstract: From the stationary Schrödinger equation in the framework of nonrelativistic quantum mechanics, we derive a representation of the elastic scattering amplitude in the form of a path integral. For evaluating the path integrals, we propose a method called unitary approximation. We obtain the scattering lengths and cross sections for a rectangular potential, a singular repulsive potential, and the Yukawa potential and compare with the exact results.
Keywords: quantum mechanics, elastic scattering, path integral.
Received: 24.05.2013
Revised: 13.01.2014
English version:
Theoretical and Mathematical Physics, 2014, Volume 179, Issue 3, Pages 695–711
DOI: https://doi.org/10.1007/s11232-014-0172-z
Bibliographic databases:
Document Type: Article
PACS: 03.65.Nk
MSC: 81U99
Language: Russian
Citation: G. V. Efimov, “Elastic scattering and the path integral”, TMF, 179:3 (2014), 367–386; Theoret. and Math. Phys., 179:3 (2014), 695–711
Citation in format AMSBIB
\Bibitem{Efi14}
\by G.~V.~Efimov
\paper Elastic scattering and the~path integral
\jour TMF
\yr 2014
\vol 179
\issue 3
\pages 367--386
\mathnet{http://mi.mathnet.ru/tmf8557}
\crossref{https://doi.org/10.4213/tmf8557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3305757}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014TMP...179..695E}
\elib{https://elibrary.ru/item.asp?id=21826688}
\transl
\jour Theoret. and Math. Phys.
\yr 2014
\vol 179
\issue 3
\pages 695--711
\crossref{https://doi.org/10.1007/s11232-014-0172-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338842800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903833590}
Linking options:
  • https://www.mathnet.ru/eng/tmf8557
  • https://doi.org/10.4213/tmf8557
  • https://www.mathnet.ru/eng/tmf/v179/i3/p367
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024