Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 2, Pages 179–221
DOI: https://doi.org/10.4213/tmf8549
(Mi tmf8549)
 

This article is cited in 38 scientific papers (total in 38 papers)

Genus expansion of HOMFLY polynomials

A. D. Mironovab, A. Yu. Morozovb, A. V. Sleptsovb

a Lebedev Physical Institute, RAS, Moscow, Russia
b Institute for Theoretical and Experimental Physics, Moscow, Russia
References:
Abstract: In the planar limit of the 't Hooft expansion, the Wilson-loop vacuum average in the three-dimensional Chern–Simons theory (in other words, the HOMFLY polynomial) depends very simply on the representation (Young diagramm), HR(A|q)|q=1=(σ1(A))|R|. As a result, the (knot-dependent) Ooguri–Vafa partition function RHRχR{p¯k} becomes a trivial τ-function of the Kadomtsev–Petviashvili hierarchy. We study higher-genus corrections to this formula for HR in the form of an expansion in powers of z=qq1. The expansion coefficients are expressed in terms of the eigenvalues of cut-and-join operators, i.e., symmetric group characters. Moreover, the z-expansion is naturally written in a product form. The representation in terms of cut-and-join operators relates to the Hurwitz theory and its sophisticated integrability. The obtained relations describe the form of the genus expansion for the HOMFLY polynomials, which for the corresponding matrix model is usually given using Virasoro-like constraints and the topological recursion. The genus expansion differs from the better-studied weak-coupling expansion at a finite number N of colors, which is described in terms of Vassiliev invariants and the Kontsevich integral.
Keywords: Chern–Simons theory, knot invariant, 't Hooft expansion.
Received: 13.05.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 2, Pages 1435–1470
DOI: https://doi.org/10.1007/s11232-013-0115-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. D. Mironov, A. Yu. Morozov, A. V. Sleptsov, “Genus expansion of HOMFLY polynomials”, TMF, 177:2 (2013), 179–221; Theoret. and Math. Phys., 177:2 (2013), 1435–1470
Citation in format AMSBIB
\Bibitem{MirMorSle13}
\by A.~D.~Mironov, A.~Yu.~Morozov, A.~V.~Sleptsov
\paper Genus expansion of HOMFLY polynomials
\jour TMF
\yr 2013
\vol 177
\issue 2
\pages 179--221
\mathnet{http://mi.mathnet.ru/tmf8549}
\crossref{https://doi.org/10.4213/tmf8549}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230758}
\zmath{https://zbmath.org/?q=an:06353912}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1435M}
\elib{https://elibrary.ru/item.asp?id=21277077}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 2
\pages 1435--1470
\crossref{https://doi.org/10.1007/s11232-013-0115-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328329300001}
\elib{https://elibrary.ru/item.asp?id=21899447}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890108889}
Linking options:
  • https://www.mathnet.ru/eng/tmf8549
  • https://doi.org/10.4213/tmf8549
  • https://www.mathnet.ru/eng/tmf/v177/i2/p179
  • This publication is cited in the following 38 articles:
    1. Yannick Mvondo-She, “From Hurwitz numbers to Feynman diagrams: Counting rooted trees in log gravity”, Nuclear Physics B, 995 (2023), 116350  crossref
    2. Lanina E. Sleptsov A. Tselousov N., “Implications For Colored Homfly Polynomials From Explicit Formulas For Group-Theoretical Structure”, Nucl. Phys. B, 974 (2022), 115644  crossref  mathscinet  isi
    3. Kushal Chakraborty, Suvankar Dutta, “Large N correlators of Chern-Simons theory in lens spaces”, Phys. Rev. D, 106:2 (2022)  crossref
    4. Yannick Mvondo-She, “Integrable hierarchies, Hurwitz numbers and a branch point field in critical topologically massive gravity”, SciPost Phys., 12:4 (2022)  crossref
    5. Bishler L., Dhara S., Grigoryev T., Mironov A., Morozov A., Morozov A., Ramadevi P., Singh V.K., Sleptsov A., “Distinguishing Mutant Knots”, J. Geom. Phys., 159 (2021), 103928  crossref  mathscinet  isi
    6. Mironov A. Morozov A., “Algebra of Quantum C-Polynomials”, J. High Energy Phys., 2021, no. 2, 142  crossref  mathscinet  isi  scopus
    7. A. Yu. Orlov, “Notes about the KP/BKP correspondence”, Theoret. and Math. Phys., 208:3 (2021), 1207–1227  mathnet  crossref  crossref  adsnasa  isi  elib
    8. Lanina E. Sleptsov A. Tselousov N., “Chern-Simons Perturbative Series Revisited”, Phys. Lett. B, 823 (2021), 136727  crossref  mathscinet  isi  scopus
    9. Mishnyakov V., Sleptsov A., Tselousov N., “A Novel Symmetry of Colored Homfly Polynomials Coming From Sl(N Vertical Bar M) Superalgebras”, Commun. Math. Phys., 384:2 (2021), 955–969  crossref  mathscinet  isi
    10. Mishnyakov V. Sleptsov A., “Perturbative Analysis of the Colored Alexander Polynomial and Kp Soliton Tau-Functions”, Nucl. Phys. B, 965 (2021), 115334  crossref  mathscinet  isi
    11. Shakirov Sh. Sleptsov A., “Quantum Racah Matrices and 3-Strand Braids in Representation [3,3]”, J. Geom. Phys., 166 (2021), 104273  crossref  mathscinet  isi
    12. Mironov A. Morozov A. Natanzon S., “Cut-and-Join Structure and Integrability For Spin Hurwitz Numbers”, Eur. Phys. J. C, 80:2 (2020), 97  crossref  mathscinet  isi
    13. Anokhina A.S., “Knot Polynomials From Gt-Matrices: Where Is Physics?”, Phys. Part. Nuclei, 51:2 (2020), 172–219  crossref  isi  scopus
    14. Andreev A., Popolitov A., Sleptsov A., Zhabin A., “Genus Expansion of Matrix Models and ? Expansion of Kp Hierarchy”, J. High Energy Phys., 2020, no. 12, 38  crossref  mathscinet  isi
    15. Dunin-Barkowski P. Popolitov A. Shadrin S. Sleptsov A., “Combinatorial Structure of Colored Homfly-Pt Polynomials For Torus Knots”, Commun. Number Theory Phys., 13:4 (2019), 763–826  crossref  mathscinet  isi
    16. A. Mironov, S. Mironov, V. Mishnyakov, A. Morozov, A. Sleptsov, “Coloured Alexander polynomials and KP hierarchy”, Phys. Lett. B, 783 (2018), 268–273  crossref  mathscinet  isi  scopus
    17. A. Mironov, A. Morozov, A. Morozov, P. Ramadevi, V. K. Singh, A. Sleptsov, “Tabulating knot polynomials for arborescent knots”, J. Phys. A-Math. Theor., 50:8 (2017), 085201  crossref  mathscinet  zmath  isi  scopus
    18. A. Yu. Morozov, A. A. Morozov, A. V. Popolitov, “Matrix model and dimensions at hypercube vertices”, Theoret. and Math. Phys., 192:1 (2017), 1039–1079  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    19. A. Mironov, A. Morozov, A. Morozov, P. Ramadevi, V. K. Singh, A. Sleptsov, “Checks of integrality properties in topological strings”, J. High Energy Phys., 2017, no. 8, 139  crossref  mathscinet  zmath  isi  scopus
    20. A. Mironov, A. Morozov, “Correlators in tensor models from character calculus”, Physics Letters B, 774 (2017), 210  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:717
    Full-text PDF :256
    References:109
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025