Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 2, Pages 179–221
DOI: https://doi.org/10.4213/tmf8549
(Mi tmf8549)
 

This article is cited in 38 scientific papers (total in 38 papers)

Genus expansion of HOMFLY polynomials

A. D. Mironovab, A. Yu. Morozovb, A. V. Sleptsovb

a Lebedev Physical Institute, RAS, Moscow, Russia
b Institute for Theoretical and Experimental Physics, Moscow, Russia
References:
Abstract: In the planar limit of the 't Hooft expansion, the Wilson-loop vacuum average in the three-dimensional Chern–Simons theory (in other words, the HOMFLY polynomial) depends very simply on the representation (Young diagramm), $H_R(A|q)\big|_{q=1}=\bigl(\sigma_1(A)\bigr)^{|R|}$. As a result, the (knot-dependent) Ooguri–Vafa partition function $\sum_RH_R\chi_R\{\bar p_k\}$ becomes a trivial $\tau$-function of the Kadomtsev–Petviashvili hierarchy. We study higher-genus corrections to this formula for $H_R$ in the form of an expansion in powers of $z=q-q^{-1}$. The expansion coefficients are expressed in terms of the eigenvalues of cut-and-join operators, i.e., symmetric group characters. Moreover, the $z$-expansion is naturally written in a product form. The representation in terms of cut-and-join operators relates to the Hurwitz theory and its sophisticated integrability. The obtained relations describe the form of the genus expansion for the HOMFLY polynomials, which for the corresponding matrix model is usually given using Virasoro-like constraints and the topological recursion. The genus expansion differs from the better-studied weak-coupling expansion at a finite number $N$ of colors, which is described in terms of Vassiliev invariants and the Kontsevich integral.
Keywords: Chern–Simons theory, knot invariant, 't Hooft expansion.
Received: 13.05.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 2, Pages 1435–1470
DOI: https://doi.org/10.1007/s11232-013-0115-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. D. Mironov, A. Yu. Morozov, A. V. Sleptsov, “Genus expansion of HOMFLY polynomials”, TMF, 177:2 (2013), 179–221; Theoret. and Math. Phys., 177:2 (2013), 1435–1470
Citation in format AMSBIB
\Bibitem{MirMorSle13}
\by A.~D.~Mironov, A.~Yu.~Morozov, A.~V.~Sleptsov
\paper Genus expansion of HOMFLY polynomials
\jour TMF
\yr 2013
\vol 177
\issue 2
\pages 179--221
\mathnet{http://mi.mathnet.ru/tmf8549}
\crossref{https://doi.org/10.4213/tmf8549}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230758}
\zmath{https://zbmath.org/?q=an:06353912}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1435M}
\elib{https://elibrary.ru/item.asp?id=21277077}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 2
\pages 1435--1470
\crossref{https://doi.org/10.1007/s11232-013-0115-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328329300001}
\elib{https://elibrary.ru/item.asp?id=21899447}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890108889}
Linking options:
  • https://www.mathnet.ru/eng/tmf8549
  • https://doi.org/10.4213/tmf8549
  • https://www.mathnet.ru/eng/tmf/v177/i2/p179
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:629
    Full-text PDF :211
    References:89
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024