Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 2, Pages 247–263
DOI: https://doi.org/10.4213/tmf8542
(Mi tmf8542)
 

This article is cited in 21 scientific papers (total in 21 papers)

Stringlike structures in Kerr–Schild geometry: The N=2 string, twistors, and the Calabi–Yau twofold

A. Ya. Burinskii

Nuclear Safety Institute (IBRAE), RAS, Moscow, Russia
References:
Abstract: The four-dimensional Kerr–Schild geometry contains two stringy structures. The first is the closed string formed by the Kerr singular ring, and the second is an open complex string obtained in the complex structure of the Kerr–Schild geometry. The real and complex Kerr strings together form a membrane source of the over-rotating Kerr–Newman solution without a horizon, a=J/mm. It was also recently found that the principal null congruence of the Kerr geometry is determined by the Kerr theorem as a quartic in the projective twistor space, which corresponds to an embedding of the Calabi–Yau twofold into the bulk of the Kerr geometry. We describe this embedding in detail and show that the four sheets of the twistorial K3 surface represent an analytic extension of the Kerr congruence created by antipodal involution.
Keywords: Kerr–Schild geometry, complex shift, Kerr theorem, twistor, K3 surface, N=2 superstring.
Received: 18.04.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 2, Pages 1492–1504
DOI: https://doi.org/10.1007/s11232-013-0118-x
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Ya. Burinskii, “Stringlike structures in Kerr–Schild geometry: The N=2 string, twistors, and the Calabi–Yau twofold”, TMF, 177:2 (2013), 247–263; Theoret. and Math. Phys., 177:2 (2013), 1492–1504
Citation in format AMSBIB
\Bibitem{Bur13}
\by A.~Ya.~Burinskii
\paper Stringlike structures in Kerr--Schild geometry: The~$N{=}2$ string, twistors, and the~Calabi--Yau twofold
\jour TMF
\yr 2013
\vol 177
\issue 2
\pages 247--263
\mathnet{http://mi.mathnet.ru/tmf8542}
\crossref{https://doi.org/10.4213/tmf8542}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230761}
\zmath{https://zbmath.org/?q=an:1298.81253}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1492B}
\elib{https://elibrary.ru/item.asp?id=21277081}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 2
\pages 1492--1504
\crossref{https://doi.org/10.1007/s11232-013-0118-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328329300004}
\elib{https://elibrary.ru/item.asp?id=21898697}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890032343}
Linking options:
  • https://www.mathnet.ru/eng/tmf8542
  • https://doi.org/10.4213/tmf8542
  • https://www.mathnet.ru/eng/tmf/v177/i2/p247
  • This publication is cited in the following 21 articles:
    1. Irina Dymnikova, “Primary superconductivity in regular rotating electrically charged compact objects”, Int. J. Mod. Phys. D, 2024  crossref
    2. A. Ya. Burinskii, “Kerr–Newman solution unites gravitation with quantum theory”, Phys. Usp., 67:10 (2024), 1034–1045  mathnet  crossref  crossref  adsnasa
    3. Irina Dymnikova, Evgeny Galaktionov, “Generic Behavior of Electromagnetic Fields of Regular Rotating Electrically Charged Compact Objects in Nonlinear Electrodynamics Minimally Coupled to Gravity”, Symmetry, 15:1 (2023), 188  crossref
    4. Dymnikova I., “Image of the Electron Suggested By Nonlinear Electrodynamics Coupled to Gravity”, Particles, 4:2 (2021), 129–145  crossref  isi
    5. Burinskii A., “The Kerr-Newman Black Hole Solution as Strong Gravity For Elementary Particles”, Gravit. Cosmol., 26:2 (2020), 87–98  crossref  mathscinet  isi
    6. Burinskii A., “Spinning Particle as Kerr-Newman “Black Hole””, Phys. Part. Nuclei Lett., 17:5 (2020), 724–729  crossref  isi
    7. Dymnikova I., Galaktionov E., “Dynamics of Electromagnetic Fields and Structure of Regular Rotating Electrically Charged Black Holes and Solitons in Nonlinear Electrodynamics Minimally Coupled to Gravity”, Universe, 5:10 (2019), 205  crossref  mathscinet  isi  scopus
    8. I. Dymnikova, “Origin of the magnetic momentum for regular electrically charged objects described by nonlinear electrodynamics coupled to gravity”, Int. J. Mod. Phys. D, 27:16 (2018), 1950011  crossref  mathscinet  isi  scopus
    9. I. Dymnikova, “Regular Rotating Black Holes and Solitons”, Gravit. Cosmol., 24:1 (2018), 13  crossref
    10. V. V. Kassandrov, J. A. Rizcallah, “Maxwell, Yang–Mills, Weyl and eikonal fields defined by any null shear-free congruence”, Int. J. Geom. Methods Mod. Phys., 14:2 (2017), 1750031  crossref  mathscinet  zmath  isi  scopus
    11. A. Burinskii, “Source of the Kerr-Newman solution as a gravitating bag model: 50 years of the problem of the source of the Kerr solution”, Int. J. Mod. Phys. A, 31:2-3, SI (2016), 1641002  crossref  mathscinet  zmath  adsnasa  isi  scopus
    12. I. Dymnikova, E. Galaktionov, “Regular rotating de Sitter–Kerr black holes and solitons”, Class. Quantum Gravity, 33:14 (2016), 145010  crossref  mathscinet  zmath  isi  elib  scopus
    13. A. Burinskii, “Emergence of the Dirac equation in the solitonic source of the Kerr spinning particle”, Gravit. Cosmol., 21:1 (2015), 28–34  crossref  mathscinet  zmath  adsnasa  isi  scopus
    14. I. Dymnikova, “Electromagnetic source for the Kerr-Newman geometry”, Int. J. Mod. Phys. D, 24:14 (2015), 1550094  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    15. A. Burinskii, “Stability of the lepton bag model based on the Kerr-Newman solution”, J. Exp. Theor. Phys., 121:5 (2015), 819–827  crossref  adsnasa  isi  scopus
    16. I. Dymnikova, E. Galaktionov, “Regular rotating electrically charged black holes and solitons in non-linear electrodynamics minimally coupled to gravity”, Class. Quantum Gravity, 32:16 (2015), 165015  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    17. Vladimir V Kassandrov, Ildus Sh Khasanov, Nina V Markova, “Collective Lorentz invariant dynamics on a single 'polynomial' worldline”, J. Phys. A: Math. Theor., 48:39 (2015), 395204  crossref
    18. Irina Dymnikova, Evgeny Galaktionov, Eduard Tropp, “Existence of Electrically Charged Structures with Regular Center in Nonlinear Electrodynamics Minimally Coupled to Gravity”, Advances in Mathematical Physics, 2015 (2015), 1  crossref
    19. Irina Dymnikova, “Elementary Superconductivity in Nonlinear Electrodynamics Coupled to Gravity”, Journal of Gravity, 2015 (2015), 1  crossref
    20. A. Burinskii, “String like structures in the real and complex Kerr-Schild geometry”, 3Quantum: Algebra Geometry Information, Journal of Physics Conference Series, 532, IOP Publishing Ltd, 2014, 012004  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :214
    References:75
    First page:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025