Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 2, Pages 247–263
DOI: https://doi.org/10.4213/tmf8542
(Mi tmf8542)
 

This article is cited in 21 scientific papers (total in 21 papers)

Stringlike structures in Kerr–Schild geometry: The $N{=}2$ string, twistors, and the Calabi–Yau twofold

A. Ya. Burinskii

Nuclear Safety Institute (IBRAE), RAS, Moscow, Russia
References:
Abstract: The four-dimensional Kerr–Schild geometry contains two stringy structures. The first is the closed string formed by the Kerr singular ring, and the second is an open complex string obtained in the complex structure of the Kerr–Schild geometry. The real and complex Kerr strings together form a membrane source of the over-rotating Kerr–Newman solution without a horizon, $a=J/m\gg m$. It was also recently found that the principal null congruence of the Kerr geometry is determined by the Kerr theorem as a quartic in the projective twistor space, which corresponds to an embedding of the Calabi–Yau twofold into the bulk of the Kerr geometry. We describe this embedding in detail and show that the four sheets of the twistorial K3 surface represent an analytic extension of the Kerr congruence created by antipodal involution.
Keywords: Kerr–Schild geometry, complex shift, Kerr theorem, twistor, K3 surface, $N{=}2$ superstring.
Received: 18.04.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 2, Pages 1492–1504
DOI: https://doi.org/10.1007/s11232-013-0118-x
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Ya. Burinskii, “Stringlike structures in Kerr–Schild geometry: The $N{=}2$ string, twistors, and the Calabi–Yau twofold”, TMF, 177:2 (2013), 247–263; Theoret. and Math. Phys., 177:2 (2013), 1492–1504
Citation in format AMSBIB
\Bibitem{Bur13}
\by A.~Ya.~Burinskii
\paper Stringlike structures in Kerr--Schild geometry: The~$N{=}2$ string, twistors, and the~Calabi--Yau twofold
\jour TMF
\yr 2013
\vol 177
\issue 2
\pages 247--263
\mathnet{http://mi.mathnet.ru/tmf8542}
\crossref{https://doi.org/10.4213/tmf8542}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230761}
\zmath{https://zbmath.org/?q=an:1298.81253}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1492B}
\elib{https://elibrary.ru/item.asp?id=21277081}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 2
\pages 1492--1504
\crossref{https://doi.org/10.1007/s11232-013-0118-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328329300004}
\elib{https://elibrary.ru/item.asp?id=21898697}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890032343}
Linking options:
  • https://www.mathnet.ru/eng/tmf8542
  • https://doi.org/10.4213/tmf8542
  • https://www.mathnet.ru/eng/tmf/v177/i2/p247
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :190
    References:66
    First page:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024