Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 3, Pages 497–517
DOI: https://doi.org/10.4213/tmf8528
(Mi tmf8528)
 

This article is cited in 12 scientific papers (total in 12 papers)

Exact solution of the one-dimensional time-dependent Schrödinger equation with a rectangular well/barrier potential and its applications

V. F. Los, N. V. Los

Institute of Magnetism, National Academy of Sciences of Ukraine, Kiev, Ukraine
References:
Abstract: We obtain an exact one-dimensional time-dependent solution for a wave function ψ(x,t) of a particle moving in the presence of a rectangular well or barrier. We present the solution, which holds for both the well and the barrier, in terms of the integrals of elementary functions; it is the sum of forward- and backward-moving components of the wave packet. We consider and numerically visualize the relative contribution of these components and of their interference to the probability density |ψ(x,t)|2 and the particle arrival time and dwell time for the narrow and broad energy (momentum) distributions of the initial Gaussian wave packet. We show that in the case of a broad initial wave packet, the quantum mechanical counterintuitive effect of the influence of the backward-moving components on the considered quantities becomes essential.
Keywords: time-dependent Schrödinger equation, rectangular well/barrier potential, backward-moving wave, dwell time, time of arrival.
Received: 10.03.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 3, Pages 1706–1721
DOI: https://doi.org/10.1007/s11232-013-0128-8
Bibliographic databases:
PACS: 03.65.Nk, 03.65.Ta, 03.65.Xp
Language: Russian
Citation: V. F. Los, N. V. Los, “Exact solution of the one-dimensional time-dependent Schrödinger equation with a rectangular well/barrier potential and its applications”, TMF, 177:3 (2013), 497–517; Theoret. and Math. Phys., 177:3 (2013), 1706–1721
Citation in format AMSBIB
\Bibitem{LosLos13}
\by V.~F.~Los, N.~V.~Los
\paper Exact solution of the~one-dimensional time-dependent Schr\"odinger equation with a~rectangular well/barrier potential and its applications
\jour TMF
\yr 2013
\vol 177
\issue 3
\pages 497--517
\mathnet{http://mi.mathnet.ru/tmf8528}
\crossref{https://doi.org/10.4213/tmf8528}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3253980}
\zmath{https://zbmath.org/?q=an:1298.81074}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1706L}
\elib{https://elibrary.ru/item.asp?id=21277093}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 3
\pages 1706--1721
\crossref{https://doi.org/10.1007/s11232-013-0128-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329318200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891697862}
Linking options:
  • https://www.mathnet.ru/eng/tmf8528
  • https://doi.org/10.4213/tmf8528
  • https://www.mathnet.ru/eng/tmf/v177/i3/p497
  • This publication is cited in the following 12 articles:
    1. Nicolò Piccione, Léa Bresque, Andrew N. Jordan, Robert S. Whitney, Alexia Auffèves, “Reservoir-Free Decoherence in Flying Qubits”, Phys. Rev. Lett., 132:22 (2024)  crossref
    2. Pablico Dean Alvin L., Galapon E.A., “Quantum Traversal Time Across a Potential Well”, Phys. Rev. A, 101:2 (2020), 022103  crossref  mathscinet  isi
    3. Muscato O., Di Stefano V., “Wigner Monte Carlo Simulation Without Discretization Error of the Tunneling Rectangular Barrier”, Commun. Appl. Ind. Math., 10:1 (2019), 20–30  crossref  mathscinet  isi  scopus
    4. M. R. A. Shegelski, S. Hogan, M. Hawse, K. Malmgren, “Transmission and reflection of a quantum particle incident upon potential drops”, Eur. J. Phys., 38:6 (2017), 065401  crossref  zmath  isi  scopus
    5. M. R. A. Shegelski, K. Malmgren, L. Salayka-Ladouceur, “Time-dependent versus time-independent probabilities of transmission and reflection of a quantum particle incident upon a step potential and a square potential well”, Can. J. Phys., 94:1 (2016), 9–14  crossref  adsnasa  isi  scopus
    6. V. F. Los, N. V. Los, “A multiple scattering theory approach to solving the time-dependent Schrödinger equation with an asymmetric rectangular potential”, Rep. Math. Phys., 77:2 (2016), 211–238  crossref  mathscinet  zmath  isi  elib  scopus
    7. O. Muscato, W. Wagner, “A class of stochastic algorithms for the Wigner equation”, SIAM J. Sci. Comput., 38:3 (2016), A1483–A1507  crossref  mathscinet  zmath  isi  elib  scopus
    8. V. F. Los, M. V. Los, “An exact solution of the time-dependent Schrödinger equation with a rectangular potential for real and imaginary times”, Ukr. J. Phys., 61:4 (2016), 331–341  crossref  isi  elib  scopus
    9. V. Los, M. Los, “Kinetics of transmission through and reflection from interfaces in nanostructures”, Nanophysics, Nanophotonics, Surface Studies, and Applications, Springer Proceedings in Physics, 183, eds. Fesenko O., Yatsenko L., Springer-Verlag Berlin, 2016, 85–100  crossref  isi  scopus
    10. V. F. Los, N. V. Los, “Time-Dependent Scattering by an Asymmetric Spin-Dependent Rectangular Potential in Nanostructures”, Metallofiz. Noveishie Tekhnol., 38:1 (2016), 19  crossref
    11. P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr, I. Dimov, “Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition”, J. Comput. Electron., 14:1, SI (2015), 151–162  crossref  isi  scopus
    12. P. Ellinghaus, M. Nedjalkov, S. Selberherr, 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2014, 113  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:773
    Full-text PDF :337
    References:71
    First page:44
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025