Abstract:
We consider the integrable system with three degrees of freedom for which V. V. Sokolov and A. V. Tsiganov specified the Lax pair. The Lax representation generalizes the L–A pair found by A. G. Reyman and M. A. Semenov-Tian-Shansky for the Kovalevskaya gyrostat in a double field. We give explicit formulas for the additional first integrals K and G (independent almost everywhere), which are functionally related to the coefficients of the spectral curve for the Sokolov–Tsiganov L–A pair. Using this form of the additional integrals K and G and the Kharlamov parametric reduction, we analytically present two invariant four-dimensional submanifolds where the induced dynamical system is Hamiltonian (almost everywhere) with two degrees of freedom. The system of equations specifying one of the invariant submanifolds is a generalization of the invariant relations for the integrable Bogoyavlensky case (rotation of a magnetized rigid body in homogeneous gravitational and magnetic fields). We use the method of critical subsystems to describe the phase topology of the whole system. For each subsystem, we construct the bifurcation diagrams and specify the bifurcations of the Liouville tori both inside the subsystems and in the whole system.
Keywords:
completely integrable Hamiltonian system, spectral curve,
moment map, bifurcation diagram, bifurcation of Liouville tori.
Citation:
P. E. Ryabov, “Phase topology of one irreducible integrable problem in the dynamics
of a rigid body”, TMF, 176:2 (2013), 205–221; Theoret. and Math. Phys., 176:2 (2013), 1000–1015
\Bibitem{Rya13}
\by P.~E.~Ryabov
\paper Phase topology of one irreducible integrable problem in the~dynamics
of a~rigid body
\jour TMF
\yr 2013
\vol 176
\issue 2
\pages 205--221
\mathnet{http://mi.mathnet.ru/tmf8515}
\crossref{https://doi.org/10.4213/tmf8515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230402}
\zmath{https://zbmath.org/?q=an:1286.70023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...176.1000R}
\elib{https://elibrary.ru/item.asp?id=20732647}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 176
\issue 2
\pages 1000--1015
\crossref{https://doi.org/10.1007/s11232-013-0087-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000324094000003}
\elib{https://elibrary.ru/item.asp?id=20455207}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884127464}
Linking options:
https://www.mathnet.ru/eng/tmf8515
https://doi.org/10.4213/tmf8515
https://www.mathnet.ru/eng/tmf/v176/i2/p205
This publication is cited in the following 11 articles:
Pavel E. Ryabov, 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), 2020, 1
A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517–525
S. V. Sokolov, “New invariant relations for one critical subsystem of a generalized two-field gyrostat”, Dokl. Phys., 62:12 (2017), 567–570
Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65
I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Generalizations of the Kovalevskaya case and quaternions”, Proc. Steklov Inst. Math., 295 (2016), 33–44
Valentin Irtegov, Tatiana Titorenko, Lecture Notes in Computer Science, 9890, Computer Algebra in Scientific Computing, 2016, 289
P. E. Ryabov, “New invariant relations for the generalized two-field gyrostat”, J. Geom. Phys., 87 (2015), 415–421
P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317
A. V. Vershilov, Yu. A. Grigorev, A. V. Tsyganov, “Ob odnoi integriruemoi deformatsii volchka Kovalevskoi”, Nelineinaya dinam., 10:2 (2014), 223–236
Mikhail P. Kharlamov, “Extensions of the Appelrot Classes for the Generalized
Gyrostat in a Double Force Field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244