Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 176, Number 1, Pages 79–88
DOI: https://doi.org/10.4213/tmf8492
(Mi tmf8492)
 

This article is cited in 5 scientific papers (total in 5 papers)

Critical behavior of percolation process influenced by a random velocity field: One–loop approximation

M. Dančoa, M. Gnatichab, T. Lučivjanskýab, L. Mižišinb

a Institute of Experimental Physics of the Slovak Academy of Sciences, Košice, Slovakia
b Faculty of Science, P. J. Šafárik University, Košice, Slovakia
Full-text PDF (421 kB) Citations (5)
References:
Abstract: Using the perturbation renormalization group, we investigate the influence of a random velocity field on the critical behavior of the directed-bond percolation process near its second-order phase transition between the absorbing and active phases. We use the Antonov–Kraichnan model with a finite correlation time to describe the advecting velocity field. To obtain information about the large-scale asymptotic behavior of the model, we use the field theory renormalization group approach. We analyze the model near its critical dimension via a three-parameter expansion in $\epsilon$, $\delta$, and $\eta$, where $\epsilon$ is the deviation from the Kolmogorov scaling, $\delta$ is the deviation from the critical space dimension, and $\eta$ is the deviation from the parabolic dispersion law for the velocity correlator. We find the fixed points with the corresponding stability regions in the leading order in the perturbation scheme.
Keywords: perturbative renormalization group, directed percolation, turbulent diffusion.
Received: 19.12.2012
English version:
Theoretical and Mathematical Physics, 2013, Volume 176, Issue 1, Pages 898–905
DOI: https://doi.org/10.1007/s11232-013-0077-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Dančo, M. Gnatich, T. Lučivjanský, L. Mižišin, “Critical behavior of percolation process influenced by a random velocity field: One–loop approximation”, TMF, 176:1 (2013), 79–88; Theoret. and Math. Phys., 176:1 (2013), 898–905
Citation in format AMSBIB
\Bibitem{DanGnaLuc13}
\by M.~Dan{\v{c}}o, M.~Gnatich, T.~Lu{\v{c}}ivjansk\'y, L.~Mižišin
\paper Critical behavior of percolation process influenced by a~random velocity field: One--loop approximation
\jour TMF
\yr 2013
\vol 176
\issue 1
\pages 79--88
\mathnet{http://mi.mathnet.ru/tmf8492}
\crossref{https://doi.org/10.4213/tmf8492}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230728}
\zmath{https://zbmath.org/?q=an:1286.82008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...176..898D}
\elib{https://elibrary.ru/item.asp?id=20732637}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 176
\issue 1
\pages 898--905
\crossref{https://doi.org/10.1007/s11232-013-0077-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323072500008}
\elib{https://elibrary.ru/item.asp?id=20601292}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84881230419}
Linking options:
  • https://www.mathnet.ru/eng/tmf8492
  • https://doi.org/10.4213/tmf8492
  • https://www.mathnet.ru/eng/tmf/v176/i1/p79
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:365
    Full-text PDF :191
    References:66
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024