Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 175, Number 3, Pages 419–428
DOI: https://doi.org/10.4213/tmf8490
(Mi tmf8490)
 

This article is cited in 5 scientific papers (total in 5 papers)

Multivariate Chebyshev polynomials in terms of singular elements

V. D. Lyakhovsky

Saint Petersburg State University, St. Petersburg, Russia
Full-text PDF (460 kB) Citations (5)
References:
Abstract: We use the direct correspondence between Weyl anti-invariant functions and multivariate second-type Chebyshev polynomials to substantially simplify most operations with multivariate polynomials. We illustrate the obtained results by studying bivariate polynomials of the second type for root systems $A_1\oplus A_1$, $B_2$, and $G_2$.
Keywords: generalized Chebyshev polynomial, semisimple Lie algebra, representation theory, Weyl group.
English version:
Theoretical and Mathematical Physics, 2013, Volume 175, Issue 3, Pages 797–805
DOI: https://doi.org/10.1007/s11232-013-0066-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. D. Lyakhovsky, “Multivariate Chebyshev polynomials in terms of singular elements”, TMF, 175:3 (2013), 419–428; Theoret. and Math. Phys., 175:3 (2013), 797–805
Citation in format AMSBIB
\Bibitem{Lya13}
\by V.~D.~Lyakhovsky
\paper Multivariate Chebyshev polynomials in terms of singular elements
\jour TMF
\yr 2013
\vol 175
\issue 3
\pages 419--428
\mathnet{http://mi.mathnet.ru/tmf8490}
\crossref{https://doi.org/10.4213/tmf8490}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172158}
\zmath{https://zbmath.org/?q=an:06293245}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...175..797L}
\elib{https://elibrary.ru/item.asp?id=20732625}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 175
\issue 3
\pages 797--805
\crossref{https://doi.org/10.1007/s11232-013-0066-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323071600010}
\elib{https://elibrary.ru/item.asp?id=20440054}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879923534}
Linking options:
  • https://www.mathnet.ru/eng/tmf8490
  • https://doi.org/10.4213/tmf8490
  • https://www.mathnet.ru/eng/tmf/v175/i3/p419
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024