Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1998, Volume 114, Number 3, Pages 410–425
DOI: https://doi.org/10.4213/tmf849
(Mi tmf849)
 

This article is cited in 12 scientific papers (total in 12 papers)

Wigner distribution functions for a relativistic linear oscillator

N. M. Atakishiyeva, Sh. M. Nagiyevb, K. B. Wolfc

a National Autonomous University of Mexico, Institute of Mathematics
b Institute of Physics Azerbaijan Academy of Sciences
c National Autonomous University of Mexico, Center of Physical Sciences
References:
Abstract: We construct the Wigner representation for a relativistic model of the linear harmonic oscillator governed by a finite-difference equation. We find Wigner functions for the stationary states, the thermodynamic equilibrium states, and the coherent states. We examine their nonrelativistic limits and the high and low temperature limits for the equilibrium states. We compute the mean values of the position and momentum coordinates for these Wigner functions.
Received: 21.07.1997
English version:
Theoretical and Mathematical Physics, 1998, Volume 114, Issue 3, Pages 322–334
DOI: https://doi.org/10.1007/BF02575445
Bibliographic databases:
Language: Russian
Citation: N. M. Atakishiyev, Sh. M. Nagiyev, K. B. Wolf, “Wigner distribution functions for a relativistic linear oscillator”, TMF, 114:3 (1998), 410–425; Theoret. and Math. Phys., 114:3 (1998), 322–334
Citation in format AMSBIB
\Bibitem{AtaNagWol98}
\by N.~M.~Atakishiyev, Sh.~M.~Nagiyev, K.~B.~Wolf
\paper Wigner distribution functions for a~relativistic linear oscillator
\jour TMF
\yr 1998
\vol 114
\issue 3
\pages 410--425
\mathnet{http://mi.mathnet.ru/tmf849}
\crossref{https://doi.org/10.4213/tmf849}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1840308}
\zmath{https://zbmath.org/?q=an:1085.81508}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 114
\issue 3
\pages 322--334
\crossref{https://doi.org/10.1007/BF02575445}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075184200007}
Linking options:
  • https://www.mathnet.ru/eng/tmf849
  • https://doi.org/10.4213/tmf849
  • https://www.mathnet.ru/eng/tmf/v114/i3/p410
  • This publication is cited in the following 12 articles:
    1. S. M. Nagiyev, A. M. Jafarova, E. I. Jafarov, “The Wigner function of a semiconfined harmonic oscillator model with a position-dependent effective mass”, Journal of Mathematical Physics, 65:1 (2024)  crossref
    2. E. I. Jafarov, “Description of the Bluffing Phenomenon in the Untrusted Seller–Buyer Relationship via the Wigner Function of the q-Deformed Quantum Harmonic Oscillator Model”, Studies in Microeconomics, 2024  crossref
    3. Sh. M. Nagiyev, R. M. Mir-Kasimov, “Relativistic linear oscillator under the action of a constant external force. Transition amplitudes and the Green's function”, Theoret. and Math. Phys., 214:1 (2023), 72–88  mathnet  crossref  crossref  mathscinet  adsnasa
    4. E. I. Jafarov, A. M. Jafarova, S. M. Nagiyev, “The Husimi function of a semiconfined harmonic oscillator model with a position-dependent effective mass”, Int. J. Mod. Phys. B, 36:31 (2022)  crossref
    5. Sh. M. Nagiyev, R. M. Mir-Kassimov, “Relativistic linear oscillator under the action of a constant external force. Wave functions and dynamical symmetry group”, Theoret. and Math. Phys., 208:3 (2021), 1265–1276  mathnet  crossref  crossref  adsnasa  isi  elib
    6. Sh. M. Nagiyev, “Using the evolution operator method to describe a particle in a homogeneous alternating field”, Theoret. and Math. Phys., 194:2 (2018), 313–327  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. Sh. M. Nagiyev, “Wigner function of a relativistic particle in a time-dependent linear potential”, Theoret. and Math. Phys., 188:1 (2016), 1030–1037  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Nagiyev, SM, “The Wigner function of the relativistic finite-difference oscillator in an external field”, Journal of Physics A-Mathematical and Theoretical, 42:45 (2009), 454015  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    9. V. V. Borzov, E. V. Damaskinskii, “Charlier Polynomials and Charlier Oscillator as Discrete Realization of the Harmonic Oscillator”, J Math Sci, 128:5 (2005), 3161  crossref
    10. V. V. Borzov, E. V. Damaskinsky, “Generalized coherent states for oscillators connected with Meixner and Meixner–Pollachek polynomials”, J. Math. Sci. (N. Y.), 136:1 (2006), 3564–3579  mathnet  crossref  mathscinet  zmath
    11. Borzov V.V., Damaskinsky E.V., “Generalized Coherent States for oscillator connected with Meixner Polynomials”, Days on Diffraction 2004, Proceedings, 2004, 35–42  crossref  mathscinet  isi
    12. Frank, A, “Wigner function of Morse potential eigenstates”, Physical Review A, 61:5 (2000), 054102  crossref  mathscinet  adsnasa  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:605
    Full-text PDF :258
    References:85
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025