Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 175, Number 3, Pages 408–418
DOI: https://doi.org/10.4213/tmf8489
(Mi tmf8489)
 

Double-logarithmic asymptotics of scattering amplitudes in gravity and supergravity

L. N. Lipatov

Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg, Russia
References:
Abstract: We review the Balitsky–Fadin–Kuraev–Lipatov approach to high-energy scattering in QCD and supersymmetric gauge theories. At a large number of colors, the equations for the gluon composite states in the $t$-channel have remarkable mathematical properties including their Möbius invariance, holomorphic separability, duality symmetry, and integrability. We formulate a theory of Reggeized gluon interactions in the form of a gauge-invariant effective action local in particle rapidities. In the maximally extended $N=4$ supersymmetry, the Pomeron is dual to the Reggeized graviton in the ten-dimensional anti-de Sitter space. As a result, the Gribov Pomeron calculus should be reformulated here as a generally covariant effective field theory for the Reggeized gravitons. We construct the corresponding effective action, which allows calculating the graviton Regge trajectory and its couplings. We sum the double-logarithmic contributions for amplitudes with graviton quantum numbers in the $t$-channel in the Einstein–Hilbert gravity and its supersymmetric generalizations. As the supergravity rank $N$ increases, the double-logarithmic amplitudes begin to decrease rapidly compared with their Born contributions.
Keywords: quantum gravity, high-energy asymptotic behavior, behavior of Regge-type amplitudes, double-logarithmic approximation.
English version:
Theoretical and Mathematical Physics, 2013, Volume 175, Issue 3, Pages 788–796
DOI: https://doi.org/10.1007/s11232-013-0065-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. N. Lipatov, “Double-logarithmic asymptotics of scattering amplitudes in gravity and supergravity”, TMF, 175:3 (2013), 408–418; Theoret. and Math. Phys., 175:3 (2013), 788–796
Citation in format AMSBIB
\Bibitem{Lip13}
\by L.~N.~Lipatov
\paper Double-logarithmic asymptotics of scattering amplitudes in gravity and supergravity
\jour TMF
\yr 2013
\vol 175
\issue 3
\pages 408--418
\mathnet{http://mi.mathnet.ru/tmf8489}
\crossref{https://doi.org/10.4213/tmf8489}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172157}
\zmath{https://zbmath.org/?q=an:1286.83043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...175..788L}
\elib{https://elibrary.ru/item.asp?id=20732624}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 175
\issue 3
\pages 788--796
\crossref{https://doi.org/10.1007/s11232-013-0065-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323071600009}
\elib{https://elibrary.ru/item.asp?id=20440568}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879963938}
Linking options:
  • https://www.mathnet.ru/eng/tmf8489
  • https://doi.org/10.4213/tmf8489
  • https://www.mathnet.ru/eng/tmf/v175/i3/p408
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:402
    Full-text PDF :195
    References:67
    First page:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024