Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 175, Number 3, Pages 388–397
DOI: https://doi.org/10.4213/tmf8478
(Mi tmf8478)
 

This article is cited in 3 scientific papers (total in 3 papers)

Casimir energy of the quantum field in a dispersive and absorptive medium

M. A. Braun

Saint Petersburg State University, St. Petersburg, Russia
Full-text PDF (382 kB) Citations (3)
References:
Abstract: We calculate the Casimir energy for a quantum field between two metallic plates separated by a dielectric in the microscopic framework with the medium modeled by a set of oscillators with continuously distributed frequencies. We study the case of one spatial dimension and compare the results for the additional energy and force due to interaction with the medium with the results obtained in the framework of the phenomenological approach similar to the well-known Lifshitz formula{:} they have opposite signs.
Keywords: Casimir force, absorption of a quantum field by a medium, Fano diagonalization, Lifshitz formula.
English version:
Theoretical and Mathematical Physics, 2013, Volume 175, Issue 3, Pages 771–778
DOI: https://doi.org/10.1007/s11232-013-0063-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. A. Braun, “Casimir energy of the quantum field in a dispersive and absorptive medium”, TMF, 175:3 (2013), 388–397; Theoret. and Math. Phys., 175:3 (2013), 771–778
Citation in format AMSBIB
\Bibitem{Bra13}
\by M.~A.~Braun
\paper Casimir energy of the~quantum field in a~dispersive and absorptive medium
\jour TMF
\yr 2013
\vol 175
\issue 3
\pages 388--397
\mathnet{http://mi.mathnet.ru/tmf8478}
\crossref{https://doi.org/10.4213/tmf8478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172155}
\zmath{https://zbmath.org/?q=an:1286.81151}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...175..771B}
\elib{https://elibrary.ru/item.asp?id=20732622}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 175
\issue 3
\pages 771--778
\crossref{https://doi.org/10.1007/s11232-013-0063-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323071600007}
\elib{https://elibrary.ru/item.asp?id=20439984}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879917594}
Linking options:
  • https://www.mathnet.ru/eng/tmf8478
  • https://doi.org/10.4213/tmf8478
  • https://www.mathnet.ru/eng/tmf/v175/i3/p388
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :160
    References:64
    First page:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024