Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 176, Number 3, Pages 385–392
DOI: https://doi.org/10.4213/tmf8467
(Mi tmf8467)
 

This article is cited in 13 scientific papers (total in 13 papers)

Classification of constant solutions of the associative Yang–Baxter equation on Mat3

V. V. Sokolov

Landau Institute for Theoretical Physics, Moscow, Russia
References:
Abstract: We find all nonequivalent constant solutions of the classical associative Yang–Baxter equation for Mat3. New examples found in the classification yield the corresponding Poisson brackets on traces, double Poisson brackets on a free associative algebra with three generators, and anti-Frobenius associative algebras.
Keywords: associative Yang–Baxter equation, constant solution, classification.
Received: 06.01.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 176, Issue 3, Pages 1156–1162
DOI: https://doi.org/10.1007/s11232-013-0096-z
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Sokolov, “Classification of constant solutions of the associative Yang–Baxter equation on Mat3”, TMF, 176:3 (2013), 385–392; Theoret. and Math. Phys., 176:3 (2013), 1156–1162
Citation in format AMSBIB
\Bibitem{Sok13}
\by V.~V.~Sokolov
\paper Classification of constant solutions of the~associative Yang--Baxter equation on $\operatorname{Mat}_3$
\jour TMF
\yr 2013
\vol 176
\issue 3
\pages 385--392
\mathnet{http://mi.mathnet.ru/tmf8467}
\crossref{https://doi.org/10.4213/tmf8467}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230739}
\zmath{https://zbmath.org/?q=an:1291.16028}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...176.1156S}
\elib{https://elibrary.ru/item.asp?id=20732656}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 176
\issue 3
\pages 1156--1162
\crossref{https://doi.org/10.1007/s11232-013-0096-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325707900004}
\elib{https://elibrary.ru/item.asp?id=21881061}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885574569}
Linking options:
  • https://www.mathnet.ru/eng/tmf8467
  • https://doi.org/10.4213/tmf8467
  • https://www.mathnet.ru/eng/tmf/v176/i3/p385
  • This publication is cited in the following 13 articles:
    1. Vsevolod Gubarev, “Rota–Baxter Operators of Weight Zero on Upper-Triangular Matrices of Order Three”, Mediterr. J. Math., 21:7 (2024)  crossref
    2. Valeriy G. Bardakov, Igor M. Nikonov, Viktor N. Zhelaybin, “Lie Rota–Baxter operators on the Sweedler algebra H4”, Int. J. Algebra Comput., 34:08 (2024), 1159  crossref
    3. Goncharov M., Gubarev V., “Rota-Baxter Operators of Nonzero Weight on the Matrix Algebra of Order Three”, Linear Multilinear Algebra, 70:6 (2022), 1055–1080  crossref  mathscinet  isi  scopus
    4. M. E. Goncharov, D. E. Kozhukhar, “Operatory Roty–Bakstera nenulevogo vesa na polnoi lineinoi algebre Li poryadka 2”, Algebra i logika, 61:1 (2022), 93–97  mathnet  crossref  mathscinet
    5. M. Goncharov, “The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order 2”, Sib. elektron. matem. izv., 19:2 (2022), 870–879  mathnet  crossref  mathscinet
    6. M. E. Goncharov, D. E. Kozhukhar', “Rota–Baxter Operators of Nonzero Weight on a Complete Linear Lie Algebra of Order Two”, Algebra Logic, 61:1 (2022), 67  crossref
    7. Fairon M., “Double Quasi-Poisson Brackets: Fusion and New Examples”, Algebr. Represent. Theory, 24:4 (2021), 911–958  crossref  mathscinet  isi
    8. D. V. Talalaev, “Tetrahedron equation: algebra, topology, and integrability”, Russian Math. Surveys, 76:4 (2021), 685–721  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. V. Gubarev, “An example of a simple double Lie algebra”, Sib. elektron. matem. izv., 18:2 (2021), 834–844  mathnet  crossref
    10. V. Gubarev, “Rota–Baxter operators on unital algebras”, Mosc. Math. J., 21:2 (2021), 325–364  mathnet  crossref
    11. Leray J., “Shifted Double Lie-Rinehart Algebras”, Theory Appl. Categ., 35 (2020), 594–621  mathscinet  isi
    12. Powell G., “On double Poisson structures on commutative algebras”, J. Geom. Phys., 110 (2016), 1–8  crossref  mathscinet  zmath  isi  elib  scopus
    13. A. I. Zobnin, “Anti-Frobenius algebras and associative Yang–Baxter equation”, Matem. modelirovanie, 26:11 (2014), 51–56  mathnet  mathscinet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:567
    Full-text PDF :223
    References:68
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025