Abstract:
We find all nonequivalent constant solutions of the classical associative Yang–Baxter equation for Mat3. New examples found in the classification yield the corresponding Poisson brackets on traces, double Poisson brackets on a free associative algebra with three generators, and anti-Frobenius associative algebras.
Citation:
V. V. Sokolov, “Classification of constant solutions of the associative Yang–Baxter equation on Mat3”, TMF, 176:3 (2013), 385–392; Theoret. and Math. Phys., 176:3 (2013), 1156–1162
This publication is cited in the following 13 articles:
Vsevolod Gubarev, “Rota–Baxter Operators of Weight Zero on Upper-Triangular Matrices of Order Three”, Mediterr. J. Math., 21:7 (2024)
Valeriy G. Bardakov, Igor M. Nikonov, Viktor N. Zhelaybin, “Lie Rota–Baxter operators on the Sweedler algebra H4”, Int. J. Algebra Comput., 34:08 (2024), 1159
Goncharov M., Gubarev V., “Rota-Baxter Operators of Nonzero Weight on the Matrix Algebra of Order Three”, Linear Multilinear Algebra, 70:6 (2022), 1055–1080
M. E. Goncharov, D. E. Kozhukhar, “Operatory Roty–Bakstera nenulevogo vesa na polnoi lineinoi algebre Li poryadka 2”, Algebra i logika, 61:1 (2022), 93–97
M. Goncharov, “The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order 2”, Sib. elektron. matem. izv., 19:2 (2022), 870–879
M. E. Goncharov, D. E. Kozhukhar', “Rota–Baxter Operators of Nonzero Weight on a Complete Linear Lie Algebra of Order Two”, Algebra Logic, 61:1 (2022), 67
Fairon M., “Double Quasi-Poisson Brackets: Fusion and New Examples”, Algebr. Represent. Theory, 24:4 (2021), 911–958
D. V. Talalaev, “Tetrahedron equation: algebra, topology, and integrability”, Russian Math. Surveys, 76:4 (2021), 685–721
V. Gubarev, “An example of a simple double Lie algebra”, Sib. elektron. matem. izv., 18:2 (2021), 834–844
V. Gubarev, “Rota–Baxter operators on unital algebras”, Mosc. Math. J., 21:2 (2021), 325–364