Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 175, Number 2, Pages 226–246
DOI: https://doi.org/10.4213/tmf8447
(Mi tmf8447)
 

This article is cited in 10 scientific papers (total in 10 papers)

Zero-mass fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions

V. R. Khalilov

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We consider the motion of a relativistic charged zero-mass fermion in Coulomb and Aharonov–Bohm potentials in $2+1$ dimensions. With these singular external potentials, we construct one-parameter self-adjoint Dirac Hamiltonians classified by self-adjoint boundary conditions. We show that if the so-called effective charge becomes overcritical, then virtual (quasistationary) bound states occur. The wave functions corresponding to these states have large amplitudes near the Coulomb center, and their energy spectrum is quasidiscrete and consists of a number of broadened levels of a width related to the inverse lifetime of the quasistationary state. We derive equations for the quasidiscrete spectra and quasistationary state lifetimes and solve these equations in physically interesting cases. We study the so-called local densities of state, which can be assessed in physical experiments, as functions of the energy and the problem parameters, investigating these densities both analytically and graphically.
Keywords: singular external potential, self-adjoint extension of a Hamiltonian, self-adjoint boundary condition, massless fermion, Coulomb potential in 2+1 dimensions, Aharonov–Bohm potential in 2+1 dimensions, virtual (quasistationary) bound state, quasidiscrete energy level, level width.
Received: 22.11.2012
Revised: 15.01.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 175, Issue 2, Pages 637–654
DOI: https://doi.org/10.1007/s11232-013-0052-y
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. R. Khalilov, “Zero-mass fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions”, TMF, 175:2 (2013), 226–246; Theoret. and Math. Phys., 175:2 (2013), 637–654
Citation in format AMSBIB
\Bibitem{Kha13}
\by V.~R.~Khalilov
\paper Zero-mass fermions in Coulomb and Aharonov--Bohm potentials in 2+1 dimensions
\jour TMF
\yr 2013
\vol 175
\issue 2
\pages 226--246
\mathnet{http://mi.mathnet.ru/tmf8447}
\crossref{https://doi.org/10.4213/tmf8447}
\zmath{https://zbmath.org/?q=an:1286.81064}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...175..637K}
\elib{https://elibrary.ru/item.asp?id=20732611}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 175
\issue 2
\pages 637--654
\crossref{https://doi.org/10.1007/s11232-013-0052-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320371600007}
\elib{https://elibrary.ru/item.asp?id=20440785}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878794918}
Linking options:
  • https://www.mathnet.ru/eng/tmf8447
  • https://doi.org/10.4213/tmf8447
  • https://www.mathnet.ru/eng/tmf/v175/i2/p226
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:604
    Full-text PDF :202
    References:75
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024