Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 1, Pages 151–162
DOI: https://doi.org/10.4213/tmf8438
(Mi tmf8438)
 

This article is cited in 2 scientific papers (total in 2 papers)

Stationary model of the Universe with torsion

V. I. Panzhenskij

Penza State University, Penza, Russia
Full-text PDF (368 kB) Citations (2)
References:
Abstract: On a four-dimensional pseudo-Riemannian manifold with the metric of a stationary model of the Universe, we construct a Riemann–Cartan structure with the automorphism group of maximum dimension. The torsion tensor of this structure is the sum of two parts: semisymmetric, aspiring to geometrization of the spin density of matter, and skew-symmetric, determining the torsion of a spatial section. We give a geometric interpretation of the spatial section torsion. We prove that the maximum dimension of the Lie group of automorphisms of a Riemann–Cartan space–time manifold with a semisymmetric or skew-symmetric connection is seven.
Keywords: Riemann–Cartan manifold, automorphism, torsion tensor.
Received: 25.10.2012
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 1, Pages 1412–1422
DOI: https://doi.org/10.1007/s11232-013-0113-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Panzhenskij, “Stationary model of the Universe with torsion”, TMF, 177:1 (2013), 151–162; Theoret. and Math. Phys., 177:1 (2013), 1412–1422
Citation in format AMSBIB
\Bibitem{Pan13}
\by V.~I.~Panzhenskij
\paper Stationary model of the~Universe with torsion
\jour TMF
\yr 2013
\vol 177
\issue 1
\pages 151--162
\mathnet{http://mi.mathnet.ru/tmf8438}
\crossref{https://doi.org/10.4213/tmf8438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230756}
\zmath{https://zbmath.org/?q=an:1297.83058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1412P}
\elib{https://elibrary.ru/item.asp?id=20732675}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 1
\pages 1412--1422
\crossref{https://doi.org/10.1007/s11232-013-0113-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326625800008}
\elib{https://elibrary.ru/item.asp?id=21888365}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887291699}
Linking options:
  • https://www.mathnet.ru/eng/tmf8438
  • https://doi.org/10.4213/tmf8438
  • https://www.mathnet.ru/eng/tmf/v177/i1/p151
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:481
    Full-text PDF :196
    References:60
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024