Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 177, Number 2, Pages 276–305
DOI: https://doi.org/10.4213/tmf8436
(Mi tmf8436)
 

This article is cited in 5 scientific papers (total in 5 papers)

Box ladders in a noninteger dimension

I. Gonzalezab, I. Kondrashukcd

a Universidad de Valparaiso, Departamento de Física y Astronomia, Avenida Gran Bretana 1111, Valparaiso, Chile
b Universidad Técnica Federico Santa Maria, and Centro Científico-Tecnol'ogico de Valparaiso, Casilla 110-V, Valparaiso, Chile
c Fakultät für Physik, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
d Grupo de Matemática Aplicada, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán, Chile
Full-text PDF (954 kB) Citations (5)
References:
Abstract: We construct a family of triangle-ladder diagrams that can be calculated using the Belokurov–Usyukina loop reduction technique in $d=4-2\varepsilon$ dimensions. The main idea of the approach we propose is to generalize this loop reduction technique existing in $d=4$ dimensions. We derive a recurrence relation between the result for an $L$-loop triangle-ladder diagram of this family and the result for an $(L-1)$-loop triangle-ladder diagram of the same family. Because the proposed method combines analytic and dimensional regularizations, we must remove the analytic regularization at the end of the calculation by taking the double uniform limit in which the parameters of the analytic regularization vanish. In the position space, we obtain a diagram in the left-hand side of the recurrence relations in which the rung indices are $1$ and all other indices are $1-\varepsilon$ in this limit. Fourier transforms of diagrams of this type give momentum space diagrams with rung indices $1-\varepsilon$ and all other indices $1$. By a conformal transformation of the dual space image of this momentum space representation, we relate such a family of triangle-ladder momentum diagrams to a family of box-ladder momentum diagrams with rung indices $1-\varepsilon$ and all other indices $1$. Because any diagram from this family is reducible to a one-loop diagram, the proposed generalization of the Belokurov–Usyukina loop reduction technique to a noninteger number of dimensions allows calculating this family of box-ladder diagrams in the momentum space explicitly in terms of Appell's hypergeometric function $F_4$ without expanding in powers of the parameter $\varepsilon$ in an arbitrary kinematic region in the momentum space.
Keywords: Belokurov–Usyukina loop reduction technique, noninteger dimensions.
Received: 28.10.2012
Revised: 15.05.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 177, Issue 2, Pages 1515–1539
DOI: https://doi.org/10.1007/s11232-013-0120-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. Gonzalez, I. Kondrashuk, “Box ladders in a noninteger dimension”, TMF, 177:2 (2013), 276–305; Theoret. and Math. Phys., 177:2 (2013), 1515–1539
Citation in format AMSBIB
\Bibitem{GonKon13}
\by I.~Gonzalez, I.~Kondrashuk
\paper Box ladders in a~noninteger dimension
\jour TMF
\yr 2013
\vol 177
\issue 2
\pages 276--305
\mathnet{http://mi.mathnet.ru/tmf8436}
\crossref{https://doi.org/10.4213/tmf8436}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3230763}
\zmath{https://zbmath.org/?q=an:1298.81175}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...177.1515G}
\elib{https://elibrary.ru/item.asp?id=21277083}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 177
\issue 2
\pages 1515--1539
\crossref{https://doi.org/10.1007/s11232-013-0120-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328329300006}
\elib{https://elibrary.ru/item.asp?id=22079443}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890032948}
Linking options:
  • https://www.mathnet.ru/eng/tmf8436
  • https://doi.org/10.4213/tmf8436
  • https://www.mathnet.ru/eng/tmf/v177/i2/p276
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025