|
This article is cited in 19 scientific papers (total in 19 papers)
$p$-Adic Gibbs measures and Markov random fields on countable graphs
U. A. Rozikov, O. N. Khakimov Институт математики
при Национальном университете Узбекистана им. М. Улугбека,
Ташкент, Узбекистан
Abstract:
The notions of the Gibbs measure and of the Markov random field are known to coincide in the real case. But in the $p$-adic case, the class of $p$-adic Markov random fields is broader than that of $p$-adic Gibbs measures. We construct $p$-adic Markov random fields (on finite graphs) that are not $p$-adic Gibbs measures. We define a $p$-adic Markov random field on countable graphs and show that the set of such fields is a nonempty closed subspace in the set of all $p$-adic probability measures.
Keywords:
граф, конфигурация, $p$-адическая мера Гиббса, $p$-адические марковские случайные поля.
Received: 16.10.2012
Citation:
U. A. Rozikov, O. N. Khakimov, “$p$-Adic Gibbs measures and Markov random fields on countable graphs”, TMF, 175:1 (2013), 84–92; Theoret. and Math. Phys., 175:1 (2013), 518–525
Linking options:
https://www.mathnet.ru/eng/tmf8428https://doi.org/10.4213/tmf8428 https://www.mathnet.ru/eng/tmf/v175/i1/p84
|
Statistics & downloads: |
Abstract page: | 482 | Full-text PDF : | 201 | References: | 59 | First page: | 19 |
|