Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 175, Number 1, Pages 84–92
DOI: https://doi.org/10.4213/tmf8428
(Mi tmf8428)
 

This article is cited in 19 scientific papers (total in 19 papers)

$p$-Adic Gibbs measures and Markov random fields on countable graphs

U. A. Rozikov, O. N. Khakimov

Институт математики при Национальном университете Узбекистана им. М. Улугбека, Ташкент, Узбекистан
References:
Abstract: The notions of the Gibbs measure and of the Markov random field are known to coincide in the real case. But in the $p$-adic case, the class of $p$-adic Markov random fields is broader than that of $p$-adic Gibbs measures. We construct $p$-adic Markov random fields (on finite graphs) that are not $p$-adic Gibbs measures. We define a $p$-adic Markov random field on countable graphs and show that the set of such fields is a nonempty closed subspace in the set of all $p$-adic probability measures.
Keywords: граф, конфигурация, $p$-адическая мера Гиббса, $p$-адические марковские случайные поля.
Received: 16.10.2012
English version:
Theoretical and Mathematical Physics, 2013, Volume 175, Issue 1, Pages 518–525
DOI: https://doi.org/10.1007/s11232-013-0042-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: U. A. Rozikov, O. N. Khakimov, “$p$-Adic Gibbs measures and Markov random fields on countable graphs”, TMF, 175:1 (2013), 84–92; Theoret. and Math. Phys., 175:1 (2013), 518–525
Citation in format AMSBIB
\Bibitem{RozKha13}
\by U.~A.~Rozikov, O.~N.~Khakimov
\paper $p$-Adic Gibbs measures and Markov random fields on countable graphs
\jour TMF
\yr 2013
\vol 175
\issue 1
\pages 84--92
\mathnet{http://mi.mathnet.ru/tmf8428}
\crossref{https://doi.org/10.4213/tmf8428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172134}
\zmath{https://zbmath.org/?q=an:1286.82013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...175..518R}
\elib{https://elibrary.ru/item.asp?id=20732602}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 175
\issue 1
\pages 518--525
\crossref{https://doi.org/10.1007/s11232-013-0042-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318805200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877351807}
Linking options:
  • https://www.mathnet.ru/eng/tmf8428
  • https://doi.org/10.4213/tmf8428
  • https://www.mathnet.ru/eng/tmf/v175/i1/p84
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:470
    Full-text PDF :199
    References:57
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024