Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 175, Number 2, Pages 159–172
DOI: https://doi.org/10.4213/tmf8417
(Mi tmf8417)
 

This article is cited in 12 scientific papers (total in 12 papers)

Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition

M. O. Korpusov, A. A. Panin

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: We consider a model initial–boundary value problem for the Benjamin–Bona–Mahony–Burgers equation with initial conditions having a physical meaning. We prove the unique local solvability in the classical sense and obtain sufficient conditions for blowup and an estimate of the blowup time. To prove the blowup, we use the known test function method developed in papers by V. A. Galaktionov, E. L. Mitidieri, and S. I. Pohozaev. We note that this is one of the first results toward the blowup for the considered equation.
Keywords: blowup, local solvability, Benjamin–Bona–Mahony–Burgers equation.
Received: 27.09.2012
English version:
Theoretical and Mathematical Physics, 2013, Volume 175, Issue 2, Pages 580–591
DOI: https://doi.org/10.1007/s11232-013-0047-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. O. Korpusov, A. A. Panin, “Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition”, TMF, 175:2 (2013), 159–172; Theoret. and Math. Phys., 175:2 (2013), 580–591
Citation in format AMSBIB
\Bibitem{KorPan13}
\by M.~O.~Korpusov, A.~A.~Panin
\paper Local solvability and solution blowup for the~Benjamin--Bona--Mahony--Burgers equation with a~nonlocal boundary condition
\jour TMF
\yr 2013
\vol 175
\issue 2
\pages 159--172
\mathnet{http://mi.mathnet.ru/tmf8417}
\crossref{https://doi.org/10.4213/tmf8417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172139}
\zmath{https://zbmath.org/?q=an:1286.76021}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...175..580K}
\elib{https://elibrary.ru/item.asp?id=20732606}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 175
\issue 2
\pages 580--591
\crossref{https://doi.org/10.1007/s11232-013-0047-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320371600002}
\elib{https://elibrary.ru/item.asp?id=20440557}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878781410}
Linking options:
  • https://www.mathnet.ru/eng/tmf8417
  • https://doi.org/10.4213/tmf8417
  • https://www.mathnet.ru/eng/tmf/v175/i2/p159
  • This publication is cited in the following 12 articles:
    1. Alsaedi A., Ahmad B., Kirane M., Torebek B.T., “Blowing-Up Solutions of the Time-Fractional Dispersive Equations”, Adv. Nonlinear Anal., 10:1 (2021), 952–971  crossref  mathscinet  isi
    2. M. O. Korpusov, D. K. Yablochkin, “Potential theory and Schauder estimate in Hölder spaces for (3+1)-dimensional Benjamin–Bona–Mahoney–Burgers equation”, Comput. Math. Math. Phys., 61:8 (2021), 1289–1314  mathnet  mathnet  crossref  crossref  isi  scopus
    3. M. O. Korpusov, E. A. Ovsyannikov, “Blow-up instability in non-linear wave models with distributed parameters”, Izv. Math., 84:3 (2020), 449–501  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    4. M. O. Korpusov, “Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source”, Izv. Math., 84:5 (2020), 930–959  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. I. I. Kolotov, A. A. Panin, “On Nonextendable Solutions and Blow-Ups of Solutions of Pseudoparabolic Equations with Coercive and Constant-Sign Nonlinearities: Analytical and Numerical Study”, Math. Notes, 105:5 (2019), 694–706  mathnet  crossref  crossref  mathscinet  isi  elib
    6. M. O. Korpusov, D. K. Yablochkin, “Potential theory for a nonlinear equation of the Benjamin–Bona–Mahoney–Burgers type”, Comput. Math. Math. Phys., 59:11 (2019), 1848–1880  mathnet  mathnet  crossref  crossref  isi  scopus
    7. M. O. Korpusov, E. V. Yushkov, “Global unsolvability of a nonlinear conductor model in the quasistationary approximation”, Theoret. and Math. Phys., 191:1 (2017), 471–479  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. A. I. Aristov, “On a Nonlinear Third-Order Equation”, Math. Notes, 102:1 (2017), 3–11  mathnet  crossref  crossref  mathscinet  isi  elib
    9. A. A. Panin, G. I. Shlyapugin, “Local solvability and solution blow-up of one-dimensional equations of the Yajima–Oikawa–Satsuma type”, Theoret. and Math. Phys., 193:2 (2017), 1561–1573  mathnet  crossref  crossref  adsnasa  isi  elib
    10. E. V. Yushkov, M. O. Korpusov, “Gradient blow-up in generalized Burgers and Boussinesq equations”, Izv. Math., 81:6 (2017), 1286–1296  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    11. Korpusov M.O., Lukyanenko D.V., Panin A.A., Yushkov E.V., “Blow-up for one Sobolev problem: Theoretical approach and numerical analysis”, J. Math. Anal. Appl., 442:2 (2016), 451–468  crossref  mathscinet  zmath  isi  elib  scopus
    12. E. V. Yushkov, M. O. Korpusov, “Global Unsolvability of One-Dimensional Problems for Burgers-Type Equations”, Math. Notes, 98:3 (2015), 503–514  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:698
    Full-text PDF :341
    References:84
    First page:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025