Abstract:
We obtain Born's rule from the classical theory of random waves in combination with the use of threshold-type detectors. We consider a model of classical random waves interacting with classical detectors and reproducing Born's rule. We do not discuss complicated interpretational problems of quantum foundations. The reader can select between the “weak interpretation”, the classical mathematical simulation of the quantum measurement process, and the “strong interpretation”, the classical wave model of the real quantum (in fact, subquantum) phenomena.
Keywords:
foundations of quantum mechanics, Born's rule, detection probability, classical random field, threshold detector.
Citation:
A. Yu. Khrennikov, B. Nilsson, S. Nordebo, “Quantum rule for detection probability from Brownian motion in the space of classical fields”, TMF, 174:2 (2013), 342–352; Theoret. and Math. Phys., 174:2 (2013), 298–306
\Bibitem{KhrNilNor13}
\by A.~Yu.~Khrennikov, B.~Nilsson, S.~Nordebo
\paper Quantum rule for detection probability from Brownian motion in the~space of classical fields
\jour TMF
\yr 2013
\vol 174
\issue 2
\pages 342--352
\mathnet{http://mi.mathnet.ru/tmf8416}
\crossref{https://doi.org/10.4213/tmf8416}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172176}
\zmath{https://zbmath.org/?q=an:1280.81008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...174..298K}
\elib{https://elibrary.ru/item.asp?id=20732586}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 174
\issue 2
\pages 298--306
\crossref{https://doi.org/10.1007/s11232-013-0027-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316338500014}
\elib{https://elibrary.ru/item.asp?id=20563750}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874859673}
Linking options:
https://www.mathnet.ru/eng/tmf8416
https://doi.org/10.4213/tmf8416
https://www.mathnet.ru/eng/tmf/v174/i2/p342
This publication is cited in the following 5 articles:
A. Khrennikov, “Emergence of quantum mechanics from theory of random fields”, J. Russ. Laser Res., 38:1 (2017), 9–26
A. Khrennikov, “The present situation in quantum theory and its merging with general relativity”, Found. Phys., 47:8, SI (2017), 1077–1099
Joffrey K. Peters, Jingyun Fan, Alan L. Migdall, Sergey V. Polyakov, “Experimental Bounds on Classical Random Field Theories”, Found Phys, 45:7 (2015), 726
A. M. Cetto, L. de la Peña, A. Valdés-Hernández, “Specificity of the Schrödinger equation”, Quantum Stud.: Math. Found., 2:3 (2015), 275
A. Khrennikov, I. Basieva, “Quantum-state dynamics as linear representation of classical (nonlinear) stochastic dynamics”, J. Russ. Laser Res., 35:1 (2014), 71–78