Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 174, Number 3, Pages 444–466
DOI: https://doi.org/10.4213/tmf8408
(Mi tmf8408)
 

This article is cited in 6 scientific papers (total in 6 papers)

Statistical field theory of a nonadditive system

A. I. Olemskoiab, O. V. Yushchenkob, A. Yu. Badalyanb

a Institute for Applied Physics, Ukrainian AS, , Sumy, Ukraine
b Sumy State University, Sumy, Ukraine
References:
Abstract: Based on quantum field methods, we develop a statistical theory of complex systems with nonadditive potentials. Using the Martin–Siggia–Rose method, we find the effective system Lagrangian, from which we obtain evolution equations for the most probable values of the order parameter and its fluctuation amplitudes. We show that these equations are unchanged under deformations of the statistical distribution while the probabilities of realizing different phase trajectories depend essentially on the nonadditivity parameter. We find the generating functional of a nonadditive system and establish its relation to correlation functions; we introduce a pair of additive generating functionals whose expansion terms determine the set of multipoint Green's functions and their self-energy parts. We find equations for the generating functional of a system having an internal symmetry and constraints. In the harmonic approximation framework, we determine the partition function and moments of the order parameter depending on the nonadditivity parameter. We develop a perturbation theory that allows calculating corrections of an arbitrary order to the indicated quantities.
Keywords: nonadditivity parameter, generating functional, partition function.
Received: 31.08.2012
English version:
Theoretical and Mathematical Physics, 2013, Volume 174, Issue 3, Pages 386–405
DOI: https://doi.org/10.1007/s11232-013-0033-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. I. Olemskoi, O. V. Yushchenko, A. Yu. Badalyan, “Statistical field theory of a nonadditive system”, TMF, 174:3 (2013), 444–466; Theoret. and Math. Phys., 174:3 (2013), 386–405
Citation in format AMSBIB
\Bibitem{OleYusBad13}
\by A.~I.~Olemskoi, O.~V.~Yushchenko, A.~Yu.~Badalyan
\paper Statistical field theory of a~nonadditive system
\jour TMF
\yr 2013
\vol 174
\issue 3
\pages 444--466
\mathnet{http://mi.mathnet.ru/tmf8408}
\crossref{https://doi.org/10.4213/tmf8408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3171517}
\zmath{https://zbmath.org/?q=an:1286.82011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...174..386O}
\elib{https://elibrary.ru/item.asp?id=20732592}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 174
\issue 3
\pages 386--405
\crossref{https://doi.org/10.1007/s11232-013-0033-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317346700006}
\elib{https://elibrary.ru/item.asp?id=20858839}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876003861}
Linking options:
  • https://www.mathnet.ru/eng/tmf8408
  • https://doi.org/10.4213/tmf8408
  • https://www.mathnet.ru/eng/tmf/v174/i3/p444
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :187
    References:82
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024