Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 175, Number 2, Pages 178–192
DOI: https://doi.org/10.4213/tmf8374
(Mi tmf8374)
 

The generalized Kupershmidt deformation for constructing new discrete integrable systems

Yehui Huanga, Runliang Linb, Yuqin Yaoc, Yunbo Zengb

a School of Mathematics and Physics, North China Electric Power University
b Department of Mathematical Sciences, Tsinghua University, Beijing, China
c Department of Applied Mathematics, China Agricultural University, Beijing, China
References:
Abstract: It is known that the KdV6 equation can be represented as the Kupershmidt deformation of the KdV equation. We propose a generalized Kupershmidt deformation for constructing new discrete integrable systems starting from the bi-Hamiltonian structure of a discrete integrable system. We consider the Toda, Kac–van Moerbeke, and Ablowitz–Ladik hierarchies and obtain Lax representations for these new deformed systems. The generalized Kupershmidt deformation provides a new way to construct discrete integrable systems.
Keywords: Kupershmidt deformation, bi-Hamiltonian system, discrete integrable system.
Received: 03.06.2012
Revised: 06.12.2012
English version:
Theoretical and Mathematical Physics, 2013, Volume 175, Issue 2, Pages 596–608
DOI: https://doi.org/10.1007/s11232-013-0049-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yehui Huang, Runliang Lin, Yuqin Yao, Yunbo Zeng, “The generalized Kupershmidt deformation for constructing new discrete integrable systems”, TMF, 175:2 (2013), 178–192; Theoret. and Math. Phys., 175:2 (2013), 596–608
Citation in format AMSBIB
\Bibitem{HuaLinYao13}
\by Yehui~Huang, Runliang~Lin, Yuqin~Yao, Yunbo~Zeng
\paper The~generalized Kupershmidt deformation for constructing new discrete integrable systems
\jour TMF
\yr 2013
\vol 175
\issue 2
\pages 178--192
\mathnet{http://mi.mathnet.ru/tmf8374}
\crossref{https://doi.org/10.4213/tmf8374}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172141}
\zmath{https://zbmath.org/?q=an:06293228}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...175..596H}
\elib{https://elibrary.ru/item.asp?id=20732608}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 175
\issue 2
\pages 596--608
\crossref{https://doi.org/10.1007/s11232-013-0049-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320371600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878785790}
Linking options:
  • https://www.mathnet.ru/eng/tmf8374
  • https://doi.org/10.4213/tmf8374
  • https://www.mathnet.ru/eng/tmf/v175/i2/p178
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :160
    References:69
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024