Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 2, Pages 283–293
DOI: https://doi.org/10.4213/tmf8371
(Mi tmf8371)
 

This article is cited in 15 scientific papers (total in 16 papers)

Multiplicity function for tensor powers of modules of the $A_n$ algebra

P. P. Kulisha, V. D. Lyakhovskyb, O. V. Postnovab

a St.~Petersburg Department of the~Steklov Institute for Mathematics, RAS, St.~Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We consider the decomposition of the $p$th tensor power of the module $L^{\omega_1}$ over the algebra $A_n$ into irreducible modules, $(L^{\omega_1})^{\otimes p}=\sum_{\nu}m(\nu,p)L^{\nu}$. This problem occurs, for example, in finding the spectrum of an invariant Hamiltonian of a spin chain with $p$ nodes. To solve the problem, we propose using the Weyl symmetry properties. For constructing the coefficients $m(\nu,p)$ as functions of $p$, we develop an algorithm applicable to powers of an arbitrary module. We explicitly write an expression for the multiplicities $m(\nu,p)$ in the decomposition of powers of the first fundamental module of $sl(n+1)$. Based on the obtained results, we find new properties of systems of orthogonal polynomials (multivariate Chebyshev polynomials). Our algorithm can also be applied to tensor powers of modules of other simple Lie algebras.
Keywords: Lie algebra representation, tensor power of modules, branching rule.
Received: 22.05.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 2, Pages 666–674
DOI: https://doi.org/10.1007/s11232-012-0063-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. P. Kulish, V. D. Lyakhovsky, O. V. Postnova, “Multiplicity function for tensor powers of modules of the $A_n$ algebra”, TMF, 171:2 (2012), 283–293; Theoret. and Math. Phys., 171:2 (2012), 666–674
Citation in format AMSBIB
\Bibitem{KulLyaPos12}
\by P.~P.~Kulish, V.~D.~Lyakhovsky, O.~V.~Postnova
\paper Multiplicity function for tensor powers of modules of the~$A_n$ algebra
\jour TMF
\yr 2012
\vol 171
\issue 2
\pages 283--293
\mathnet{http://mi.mathnet.ru/tmf8371}
\crossref{https://doi.org/10.4213/tmf8371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168711}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..666K}
\elib{https://elibrary.ru/item.asp?id=20732466}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 2
\pages 666--674
\crossref{https://doi.org/10.1007/s11232-012-0063-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304914200008}
\elib{https://elibrary.ru/item.asp?id=17990743}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862141651}
Linking options:
  • https://www.mathnet.ru/eng/tmf8371
  • https://doi.org/10.4213/tmf8371
  • https://www.mathnet.ru/eng/tmf/v171/i2/p283
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:534
    Full-text PDF :202
    References:79
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024