Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 2, Pages 254–270
DOI: https://doi.org/10.4213/tmf8368
(Mi tmf8368)
 

This article is cited in 16 scientific papers (total in 16 papers)

An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions

F. Colomoa, A. G. Pronkob

a INFN, Sezione di Firenze, Firenze, Italy
b St. Petersburg Department of the Steklov Institute of Mathematics, RAS, St. Petersburg, Russia
References:
Abstract: We address the problem of calculating correlation functions in the six-vertex model with domain wall boundary conditions by considering a particular nonlocal correlation function, called the row configuration probability. This correlation function can be used as a building block for computing various (both local and nonlocal) correlation functions in the model. We calculate the row configuration probability using the quantum inverse scattering method, giving the final result in terms of multiple integrals. We also discuss the relation to the emptiness formation probability, another nonlocal correlation function, which was previously computed using similar methods.
Keywords: vertex model, correlation function, domain wall boundary condition, multiple-integral representation, quantum inverse scattering method.
Received: 17.05.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 2, Pages 641–654
DOI: https://doi.org/10.1007/s11232-012-0061-2
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: F. Colomo, A. G. Pronko, “An approach for calculating correlation functions in the six-vertex model with domain wall boundary conditions”, TMF, 171:2 (2012), 254–270; Theoret. and Math. Phys., 171:2 (2012), 641–654
Citation in format AMSBIB
\Bibitem{ColPro12}
\by F.~Colomo, A.~G.~Pronko
\paper An~approach for calculating correlation functions in the~six-vertex model with domain wall boundary conditions
\jour TMF
\yr 2012
\vol 171
\issue 2
\pages 254--270
\mathnet{http://mi.mathnet.ru/tmf8368}
\crossref{https://doi.org/10.4213/tmf8368}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168709}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..641C}
\elib{https://elibrary.ru/item.asp?id=20732464}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 2
\pages 641--654
\crossref{https://doi.org/10.1007/s11232-012-0061-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304914200006}
\elib{https://elibrary.ru/item.asp?id=17990650}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862131448}
Linking options:
  • https://www.mathnet.ru/eng/tmf8368
  • https://doi.org/10.4213/tmf8368
  • https://www.mathnet.ru/eng/tmf/v171/i2/p254
  • This publication is cited in the following 16 articles:
    1. Filippo Colomo, Andrei G. Pronko, “Scaling limit of domino tilings on a pentagonal domain”, Phys. Rev. E, 110:5 (2024)  crossref
    2. Zhao Zhang, Henrik Schou Røising, “The frustration-free fully packed loop model”, J. Phys. A: Math. Theor., 56:19 (2023), 194001  crossref
    3. Zhao Zhang, Israel Klich, “Coupled Fredkin and Motzkin chains from quantum six- and nineteen-vertex models”, SciPost Phys., 15:2 (2023)  crossref
    4. Belov P., Reshetikhin N., “The Two-Point Correlation Function in the Six-Vertex Model”, J. Phys. A-Math. Theor., 55:15 (2022), 155001  crossref  mathscinet  isi
    5. V. S. Kapitonov, A. G. Pronko, “Six-Vertex Model as a Grassmann Integral, One-Point Function, and the Arctic Ellipse”, J Math Sci, 264:3 (2022), 313  crossref
    6. Jean-Marie Stéphan, “Exact time evolution formulae in the XXZ spin chain with domain wall initial state”, J. Phys. A: Math. Theor., 55:20 (2022), 204003  crossref
    7. Mikhail D. Minin, Andrei G. Pronko, “Boundary One-Point Function of the Rational Six-Vertex Model with Partial Domain Wall Boundary Conditions: Explicit Formulas and Scaling Properties”, SIGMA, 17 (2021), 111, 29 pp.  mathnet  crossref
    8. Colomo F., Di Giulio G., Pronko A.G., “Six-Vertex Model on a Finite Lattice: Integral Representations For Nonlocal Correlation Functions”, Nucl. Phys. B, 972 (2021), 115535  crossref  mathscinet  isi
    9. A.A. Nazarov, S. A. Paston, “Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain”, Theoret. and Math. Phys., 205:2 (2020), 1473–1491  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    10. V. S. Kapitonov, A. G. Pronko, “Six-vertex model as a Grassmann integral, one-point function, and the arctic ellipse”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 27, Zap. nauchn. sem. POMI, 494, POMI, SPb., 2020, 168–218  mathnet
    11. Cantini L., Colomo F., Pronko A.G., “Integral Formulas and Antisymmetrization Relations For the Six-Vertex Model”, Ann. Henri Poincare, 21:3 (2020), 865–884  crossref  mathscinet  isi
    12. J. Math. Sci. (N. Y.), 242:5 (2019), 742–752  mathnet  crossref
    13. Colomo F., Pronko A.G., Sportiello A., “Generalized emptiness formation probability in the six-vertex model”, J. Phys. A-Math. Theor., 49:41 (2016), 415203  crossref  mathscinet  zmath  isi  elib  scopus
    14. Behrend R.E., “Multiply-Refined Enumeration of Alternating Sign Matrices”, Adv. Math., 245 (2013), 439–499  crossref  mathscinet  zmath  isi  elib  scopus
    15. Falco P., “Arrow-Arrow Correlations for the Six-Vertex Model”, Phys. Rev. E, 88:3 (2013), 030103  crossref  adsnasa  isi  scopus
    16. Foda O., Wheeler M., “Partial domain wall partition functions”, J. High Energy Phys., 2012, no. 7, 186, 35 pp.  crossref  mathscinet  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :159
    References:62
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025