Abstract:
This is a review of generalizations of the ττ-function and integrable hierarchies and of their group theory interpretations, which admits an immediate quantization procedure. Different group theory structures related to the integrable system, as well as their quantum deformations, are discussed.
Citation:
A. D. Mironov, “Group theory approach to the ττ-function and its quantization”, TMF, 114:2 (1998), 163–232; Theoret. and Math. Phys., 114:2 (1998), 127–183
\Bibitem{Mir98}
\by A.~D.~Mironov
\paper Group theory approach to the $\tau$-function and its quantization
\jour TMF
\yr 1998
\vol 114
\issue 2
\pages 163--232
\mathnet{http://mi.mathnet.ru/tmf836}
\crossref{https://doi.org/10.4213/tmf836}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1756990}
\zmath{https://zbmath.org/?q=an:1040.81036}
\elib{https://elibrary.ru/item.asp?id=13304934}
\transl
\jour Theoret. and Math. Phys.
\yr 1998
\vol 114
\issue 2
\pages 127--183
\crossref{https://doi.org/10.1007/BF02557115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074933600001}
Linking options:
https://www.mathnet.ru/eng/tmf836
https://doi.org/10.4213/tmf836
https://www.mathnet.ru/eng/tmf/v114/i2/p163
This publication is cited in the following 44 articles:
A. Mironov, V. Mishnyakov, A. Morozov, “Tau-functions beyond the group elements”, Nuclear Physics B, 1001 (2024), 116504
A. Mironov, A. Morozov, “On the status of DELL systems”, Nuclear Physics B, 999 (2024), 116448
Mironov A., Morozov A., Zenkevich Y., “Duality in Elliptic Ruijsenaars System and Elliptic Symmetric Functions”, Eur. Phys. J. C, 81:5 (2021), 461
Mironov A. Morozov A. Natanzon S., “Cut-and-Join Structure and Integrability For Spin Hurwitz Numbers”, Eur. Phys. J. C, 80:2 (2020), 97
Itoyama H. Mironov A. Morozov A., “Complete Solution to Gaussian Tensor Model and Its Integrable Properties”, Phys. Lett. B, 802 (2020), 135237
Itoyama H. Mironov A. Morozov A., “From Kronecker to Tableau Pseudo-Characters in Tensor Models”, Phys. Lett. B, 788 (2019), 76–81
Awata H., Kanno H., Mironov A., Morozov A., Morozov A., Ohkubo Yu., Zenkevich Y., “Anomaly in RTT relation for DIM algebra and network matrix models”, Nucl. Phys. B, 918 (2017), 358–385
Morozov A., Zenkevich Y., “Decomposing Nekrasov Decomposition”, J. High Energy Phys., 2016, no. 2, 098
Awata H., Kanno H., Mironov A., Morozov A., Morozov A., Ohkubo Yu., Zenkevich Y., “Toric Calabi-Yau threefolds as quantum integrable systems. $$ \mathrm{\mathcal{R}} $$ -matrix and T T $$ \mathrm{\mathcal{R}}\mathcal{T}\mathcal{T} $$ relations”, J. High Energy Phys., 2016, no. 10, 047
Melnikov D. Mironov A. Morozov A., “On skew tau-functions in higher spin theory”, J. High Energy Phys., 2016, no. 5, 027
H. Itoyama, A. D. Mironov, A. Yu. Morozov, “Matching branches of a nonperturbative conformal block at its singularity divisor”, Theoret. and Math. Phys., 184:1 (2015), 891–923
D. Galakhov, A. Mironov, A. Morozov, “Wall-crossing invariants: from quantum mechanics to knots”, J. Exp. Theor. Phys., 120:3 (2015), 549
A. V. Popolitov, “Relation between Nekrasov functions and Bohr–Sommerfeld periods in the pure $SU(N)$ case”, Theoret. and Math. Phys., 178:2 (2014), 239–252
JETP Letters, 100:4 (2014), 271–278
Nieri F. Pasquetti S. Passerini F. Torrielli A., “5D Partition Functions, Q-Virasoro Systems and Integrable Spin-Chains”, J. High Energy Phys., 2014, no. 12, 040
Sleptsov A., “Hidden Structures of Knot Invariants”, Int. J. Mod. Phys. A, 29:29 (2014), 1430063
Alexandrov A. Mironov A. Morozov A. Natanzon S., “On KP-Integrable Hurwitz Functions”, J. High Energy Phys., 2014, no. 11, 080
Mironov A. Morozov A. Sleptsov A., “On Genus Expansion of Knot Polynomials and Hidden Structure of Hurwitz Tau-Functions”, Eur. Phys. J. C, 73:7 (2013), 2492
Anokhina A., Mironov A., Morozov A., Morozov A., “Colored Homfly Polynomials as Multiple Sums Over Paths Or Standard Young Tableaux”, Adv. High. Energy Phys., 2013, 931830
Alexandrov A., Mironov A., Morozov A., Natanzon S., “Integrability of Hurwitz partition functions”, J. Phys. A: Math. Theor., 45:4 (2012), 045209