Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 171, Number 2, Pages 196–207
DOI: https://doi.org/10.4213/tmf8359
(Mi tmf8359)
 

This article is cited in 2 scientific papers (total in 2 papers)

New integrable systems as a limit of the elliptic $SL(N,\mathbb C)$ top

S. Arthamonovab

a Moscow Institute for Physics and Technology, Moscow, Russia
b Institute for Theoretical and Experimental Physics, Moscow, Russia
Full-text PDF (461 kB) Citations (2)
References:
Abstract: We consider the scaling limit of an elliptic top. This limit is a combination of a scaling of the elliptic top variables, an infinite shift of the spectral parameter, and the trigonometric limit. We give general necessary constraints on the scaling of the variables and examples of such a degeneracy. A certain subclass of limit systems is integrable in the Liouville sense, which can also be shown directly.
Keywords: integrable system, Inozemtsev limit, integrability test, elliptic top.
Received: 16.05.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 171, Issue 2, Pages 589–599
DOI: https://doi.org/10.1007/s11232-012-0057-y
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. Arthamonov, “New integrable systems as a limit of the elliptic $SL(N,\mathbb C)$ top”, TMF, 171:2 (2012), 196–207; Theoret. and Math. Phys., 171:2 (2012), 589–599
Citation in format AMSBIB
\Bibitem{Art12}
\by S.~Arthamonov
\paper New integrable systems as a~limit of the~elliptic $SL(N,\mathbb C)$ top
\jour TMF
\yr 2012
\vol 171
\issue 2
\pages 196--207
\mathnet{http://mi.mathnet.ru/tmf8359}
\crossref{https://doi.org/10.4213/tmf8359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168705}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...171..589A}
\elib{https://elibrary.ru/item.asp?id=20732459}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 171
\issue 2
\pages 589--599
\crossref{https://doi.org/10.1007/s11232-012-0057-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304914200002}
\elib{https://elibrary.ru/item.asp?id=17990810}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862146167}
Linking options:
  • https://www.mathnet.ru/eng/tmf8359
  • https://doi.org/10.4213/tmf8359
  • https://www.mathnet.ru/eng/tmf/v171/i2/p196
  • This publication is cited in the following 2 articles:
    1. G. Aminov, S. Arthamonov, “New $2\times 2$ 2 × 2 -Matrix Linear Problems for the Painlevé Equations III, V”, Constr Approx, 41:3 (2015), 357  crossref
    2. G. Aminov, S. Arthamonov, “Degenerating the elliptic Schlesinger system”, Theoret. and Math. Phys., 174:1 (2013), 1–20  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:561
    Full-text PDF :216
    References:94
    First page:21
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025