Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 174, Number 1, Pages 25–45
DOI: https://doi.org/10.4213/tmf8352
(Mi tmf8352)
 

This article is cited in 23 scientific papers (total in 23 papers)

Universal integrability objects

H. Boosa, F. Gohmanna, A. Klümpera, Kh. Nirovba, A. V. Razumovcd

a University of Wuppertal
b Institute for Nuclear Research, RAS, Moscow, Russia
c Max-Planck-Institut für Mathematik, Bonn, Germany
d Institute for High Energy Physics, Protvino, Moscow Oblast, Russia
References:
Abstract: We discuss the main points of the quantum group approach in the theory of quantum integrable systems and illustrate them for the case of the quantum group Uq(L(sl2)). We give a complete set of the functional relations correcting inexactitudes in the previous considerations. We especially attend to the interrelation of the representations used to construct the universal transfer operators and Q-operators.
Keywords: integrable system, quantum group, representation, functional relation.
English version:
Theoretical and Mathematical Physics, 2013, Volume 174, Issue 1, Pages 21–39
DOI: https://doi.org/10.1007/s11232-013-0002-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: H. Boos, F. Gohmann, A. Klümper, Kh. Nirov, A. V. Razumov, “Universal integrability objects”, TMF, 174:1 (2013), 25–45; Theoret. and Math. Phys., 174:1 (2013), 21–39
Citation in format AMSBIB
\Bibitem{BooGohKlu13}
\by H.~Boos, F.~Gohmann, A.~Kl\"umper, Kh.~Nirov, A.~V.~Razumov
\paper Universal integrability objects
\jour TMF
\yr 2013
\vol 174
\issue 1
\pages 25--45
\mathnet{http://mi.mathnet.ru/tmf8352}
\crossref{https://doi.org/10.4213/tmf8352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172949}
\zmath{https://zbmath.org/?q=an:1280.81068}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...174...21B}
\elib{https://elibrary.ru/item.asp?id=20732562}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 174
\issue 1
\pages 21--39
\crossref{https://doi.org/10.1007/s11232-013-0002-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314532100002}
\elib{https://elibrary.ru/item.asp?id=20433097}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84873596937}
Linking options:
  • https://www.mathnet.ru/eng/tmf8352
  • https://doi.org/10.4213/tmf8352
  • https://www.mathnet.ru/eng/tmf/v174/i1/p25
  • This publication is cited in the following 23 articles:
    1. Alec Cooper, Bart Vlaar, Robert Weston, “A Q-Operator for Open Spin Chains II: Boundary Factorization”, Commun. Math. Phys., 405:5 (2024)  crossref
    2. A. V. Razumov, “Khoroshkin–Tolstoy approach to quantum superalgebras”, Theoret. and Math. Phys., 215:1 (2023), 560–585  mathnet  crossref  crossref  mathscinet  adsnasa
    3. A. V. Razumov, “On Poincaré–Birkhoff–Witt basis of the quantum general linear superalgebra”, Theoret. and Math. Phys., 217:3 (2023), 1938–1953  mathnet  crossref  crossref  mathscinet  adsnasa
    4. A. V. Razumov, “$\ell$-weights and factorization of transfer operators”, Theoret. and Math. Phys., 208:2 (2021), 1116–1143  mathnet  crossref  crossref  adsnasa  isi  elib
    5. Razumov V A., “Quantum Groups and Functional Relations For Arbitrary Rank”, Nucl. Phys. B, 971 (2021), 115517  crossref  mathscinet  isi
    6. Razumov V A., “Reduced Qkz Equation and Genuine Qkz Equation”, J. Phys. A-Math. Theor., 53:40 (2020), 405204  crossref  mathscinet  isi
    7. Vlaar B., Weston R., “A Q-Operator For Open Spin Chains i. Baxter'S Tq Relation”, J. Phys. A-Math. Theor., 53:24 (2020), 245205  crossref  mathscinet  isi
    8. Kluemper A., Nirov Kh.S., Razumov V A., “Reduced Qkz Equation: General Case”, J. Phys. A-Math. Theor., 53:1 (2020), 015202  crossref  mathscinet  isi
    9. Khazret S. Nirov, Alexander V. Razumov, “Vertex Models and Spin Chains in Formulas and Pictures”, SIGMA, 15 (2019), 068, 67 pp.  mathnet  crossref
    10. Kh. S. Nirov, A. V. Razumov, J. Geom. Phys., 112 (2017), 1–28  crossref  mathscinet  zmath  isi  elib  scopus
    11. Khazret S. Nirov, Alexander V. Razumov, “Highest $\ell$-Weight Representations and Functional Relations”, SIGMA, 13 (2017), 043, 31 pp.  mathnet  crossref
    12. H. Boos, F. Goehmann, A. Kluemper, Kh. S. Nirov, A. V. Razumov, “Oscillator versus prefundamental representations. II: arbitrary higher ranks”, J. Math. Phys., 58:9 (2017), 093504  crossref  mathscinet  zmath  isi  scopus
    13. Kh. S. Nirov, A. V. Razumov, “Quantum groups, verma modules and $q$-oscillators: general linear case”, J. Phys. A-Math. Theor., 50:30 (2017), 305201  crossref  mathscinet  zmath  isi  scopus
    14. Kh.S. Nirov, A.V. Razumov, “Quantum groups and functional relations for lower rank”, Journal of Geometry and Physics, 112 (2017), 1  crossref
    15. H. Boos, F. Goehmann, A. Kluemper, Kh. S. Nirov, A. V. Razumov, “Oscillator versus prefundamental representations”, J. Math. Phys., 57:11 (2016), 111702  crossref  mathscinet  zmath  isi  elib  scopus
    16. Kh S Nirov, A V Razumov, “Quantum affine algebras and universal functional relations”, J. Phys.: Conf. Ser., 670 (2016), 012037  crossref
    17. A. A. Ovchinnikov, “Baxter $Q$-operator and functional relations”, Phys. Lett. B, 742 (2015), 335–339  crossref  mathscinet  zmath  adsnasa  isi  scopus
    18. D. Buecher, I. Runkel, “Integrable perturbations of conformal field theories and Yetter-Drinfeld modules”, J. Math. Phys., 55:11 (2014), 111705  crossref  mathscinet  zmath  adsnasa  isi  scopus
    19. V. V. Mangazeev, “$Q$-operators in the six-vertex model”, Nucl. Phys. B, 886 (2014), 166–184  crossref  mathscinet  zmath  adsnasa  isi  scopus
    20. H. Boos, F. Goehmann, A. Kluemper, Kh. S. Nirov, A. V. Razumov, “Quantum groups and functional relations for higher rank”, J. Phys. A-Math. Theor., 47:27 (2014), 275201  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:594
    Full-text PDF :229
    References:66
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025