Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2012, Volume 172, Number 3, Pages 437–453
DOI: https://doi.org/10.4213/tmf8337
(Mi tmf8337)
 

This article is cited in 7 scientific papers (total in 7 papers)

The Aharonov–Bohm effect for massless Dirac fermions and the spectral flow of Dirac-type operators with classical boundary conditions

M. I. Katsnel'sona, V. E. Nazaikinskiibcd

a Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
b Ishlinsky Institute for Problems in Mechanics, RAS, Moscow, Russia
c Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, Russia
d Moscow State Institute for Electronics and Mathematics, Moscow, Russia
Full-text PDF (652 kB) Citations (7)
References:
Abstract: In topological terms, we compute the spectral flow of an arbitrary family of self-adjoint Dirac-type operators with classical (local) boundary conditions on a compact Riemannian manifold with boundary under the assumption that the initial and terminal operators of the family are conjugate by an automorphism of the bundle in which the operators act. We use this result to study conditions for the existence of a nonzero spectral flow of a family of self-adjoint Dirac-type operators with local boundary conditions in a two-dimensional domain with a nontrivial topology and discuss possible physical realizations of a nonzero spectral flow.
Keywords: Aharonov–Bohm effect, massless Dirac fermion, graphene, topological insulator, self-adjoint Dirac operator, spectral flow, Atiyah–Singer index theorem, Atiyah–Bott index theorem, index locality principle.
Received: 19.03.2012
English version:
Theoretical and Mathematical Physics, 2012, Volume 172, Issue 3, Pages 1263–1277
DOI: https://doi.org/10.1007/s11232-012-0112-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. I. Katsnel'son, V. E. Nazaikinskii, “The Aharonov–Bohm effect for massless Dirac fermions and the spectral flow of Dirac-type operators with classical boundary conditions”, TMF, 172:3 (2012), 437–453; Theoret. and Math. Phys., 172:3 (2012), 1263–1277
Citation in format AMSBIB
\Bibitem{KatNaz12}
\by M.~I.~Katsnel'son, V.~E.~Nazaikinskii
\paper The~Aharonov--Bohm effect for massless Dirac fermions and the~spectral flow of Dirac-type operators with classical boundary conditions
\jour TMF
\yr 2012
\vol 172
\issue 3
\pages 437--453
\mathnet{http://mi.mathnet.ru/tmf8337}
\crossref{https://doi.org/10.4213/tmf8337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3168747}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012TMP...172.1263K}
\elib{https://elibrary.ru/item.asp?id=20732522}
\transl
\jour Theoret. and Math. Phys.
\yr 2012
\vol 172
\issue 3
\pages 1263--1277
\crossref{https://doi.org/10.1007/s11232-012-0112-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309725400008}
\elib{https://elibrary.ru/item.asp?id=20495343}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867405665}
Linking options:
  • https://www.mathnet.ru/eng/tmf8337
  • https://doi.org/10.4213/tmf8337
  • https://www.mathnet.ru/eng/tmf/v172/i3/p437
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1124
    Full-text PDF :245
    References:103
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024